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Abstract

We study the classical symmetric X-chart with control limits set k standard deviations

from the known in-control mean. The standard deviation is estimated with in-control data,

in what we refer to as Phase-I. We consider three performance measures: the average run

length (ARL), the standard deviation of the conditional average run length (SDARL), and the

corresponding coefficient of variation.

Modeling the X data as independent and identically distributed, with marginal distribu-

tions chosen from the Johnson family, we investigate in-control and out-of-control sensitivities

to three factors: the third and fourth standardized moments of the X data distribution and

the number of Phase-I observations. Considering both bounded and unbounded data distribu-

tions, our analytical, numerical, and Monte Carlo simulation results show that nonnormality

has a substantial effect on all three performance measures; and the effects are nonmonotonic
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in both skewness and kurtosis.

We show that all three performance measures are flawed when estimating the standard

deviation. In particular, we show that ARL and SDARL values increase, eventually becoming

infinite, as the number of Phase-I observations decreases, even in cases where run length is

finite with probability one. We show analytically that, for bounded data distributions with any

finite shift, estimating the standard deviation sometimes results in infinite ARL and SDARL

values.

Keywords: Average run length, control limits, Johnson family, kurtosis, skewness

1 Introduction

We study the effects of nonnormality and standard-deviation estimation on the run-length

properties of X control charts, which are used to detect whether the mean of a data process is in

or out of control (Montgomery 2013). Suppose that we have available an ostensibly independent

and identically distributed (iid) sequence of observable sample means X i, i = 1, 2, . . ., with

known in-control mean µ0. The X control-chart procedure monitors the sequence of sample

means in order to detect a mean shift away from µ0. An out-of-control signal is sent when

a sample mean, say XN , first lies outside the chart’s control limits. We focus on the case of

symmetric control limits µ0 ± kσ̂X , where k is a positive constant and σ̂X is the estimated

standard deviation of the in-control X process. We refer to µ0 − kσ̂X as the lower control

limit (LCL) and µ0 + kσ̂X as the upper control limit (UCL). Following common usage, our

numerical and Monte Carlo results assume that k = 3, although we provide some analytical

results for general values of k.

1.1 Control-chart performance measures

Other than by economic criteria, control-chart performance is measured by the statistical

properties of the random run lengths Nδ = min{i ∈ Z
+ : |Xi − µ0| > kσ̂X} when the data-

process mean is shifted from µ0 by δ standard deviations σX of X. (If the set {i ∈ Z
+ :

|Xi−µ0| > kσ̂X} is empty, then Nδ = ∞.) Common performance measures include the average

run length (ARL), denoted as ARLδ ≡ E(Nδ), and the standard deviation and percentiles of

Nδ. For example, when the process is in control with mean µ0, the resulting in-control ARL,
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ARL0, is preferred to be large, indicating a lower frequency of false alarms; when the process

is out of control with the mean shift δ 6= 0, ARLδ is preferred to be small, indicating higher

power in detecting the mean shift. For notational simplicity, we drop the subscript δ in Nδ

and ARLδ for the rest of this subsection.

Because we consider only iid data, for fixed LCL and UCL values, the distribution of N

is geometric. Let p(σ̂X) denote the probability P{X 6∈ µ0 ± kσ̂X}, conditional on the Phase-I

estimate of σX . The mean of N is 1/p(σ̂X) and the variance is [1 − p(σ̂X)]/[p(σ̂X)]2. The

LCL and UCL values can be fixed in two ways: (i) if σX has a known value (and therefore

σ̂X = σX) or (ii) if a particular realization of the estimated standard deviation σ̂X is used.

Consider the general case, including the first case with an infinite Phase-I sample size m

(i.e., σ̂X = σX) and the second case with a finite m. Then,

ARL = E(N ) = Ebσ
X

[
E(N |σ̂X)

]
= Ebσ

X

[
1/p(σ̂X)

]
, (1)

where the last equality is valid because, given a specific observation of σ̂X , the conditional

distribution of N is geometric with the random probability of success p(σ̂X). The variance of

the run length can be decomposed into two parts (e.g., Ross 2006, page 381):

Var(N ) = Ebσ
X

[
Var(N |σ̂X)

]
+ Varbσ

X

[
E(N |σ̂X)

]

= Ebσ
X

[(
1 − p(σ̂X)

)
/
(
p(σ̂X)

)2
]

+ Varbσ
X

[
1/p(σ̂X)

]

≡ Ebσ
X

[(
1 − p(σ̂X)

)
/
(
p(σ̂X)

)2
]

+ SDARL2, (2)

where SDARL denotes the standard deviation of the conditional ARL, E(N |σ̂X). Equation (2)

shows that the variance of the run length is at least the squared SDARL.

For the first case (σ̂X known), ARL and Var(N ) can be simplified as

ARL = 1/p(σX) and Var(N ) = [1 − p(σX)]/[p(σX)]2

because σ̂X = σX and SDARL equals zero. For example and for later comparison, consider

the special case where X has a normal distribution and the shift is δ = 0 (that is, the mean

is µ = µ0). For the commonly used value k = 3, the in-control ARL is ARL0 = [2Φ(−3)]−1 =
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(.0027)−1 = 370.4 and the standard deviation of the run length is (1− .0027)0.5/.0027 = 369.9,

where Φ(·) is the standard-normal cumulative distribution function (cdf).

The performance measures that we consider are ARL, SDARL, and CVARL, where

CVARL ≡ SDARL/ARL

is the coefficient of variation of the conditional ARL. These three performance measures are

functions of the shift δ, the data process, and the quality of the estimated standard deviation;

they are not functions of µ0 or σX . We are interested in the effects of both nonnormality and

estimation error on these three performance measures. However, when only the nonnormality

effect is discussed, we only consider the performance measure ARL because in this case, we

assume that σX is known and hence, SDARL is zero.

Despite ARL being the most-popular performance measure, we also consider SDARL be-

cause some recent literature suggests using SDARL to quantify estimation errors. (See Sec-

tion 2.2.) If the sample size for computing σ̂X is small, the distribution of the conditional

ARL has a long right tail and hence SDARL is large. Consequently, the value of ARL0 for an

observed σ̂X might deviate highly from the nominal value, the ARL0 for known σX . We also

consider CVARL, the normalized SDARL, since whether the value of SDARL is large depends

on the value of ARL.

1.2 One-sided and two-sided charts

Our focus is on two-sided symmetric control charts, but lower- and upper-limit behaviors

differ when δ 6= 0. To better explain the ARL behavior of two-sided charts, we sometimes

also consider lower one-sided charts and upper one-sided charts. We denote the corresponding

ARLs by ARLδ, ARL−
δ , and ARL+

δ , where the latter two correspond to run lengths until an

X observation goes below the LCL and above the UCL, respectively. Each ARL value is

the reciprocal of the corresponding tail probability. Let p− ≡ P(X < µ − kσ̂X) denote the

lower one-sided probability, p+ ≡ P(X > µ + kσ̂X) denote the upper one-sided probability,

and p ≡ p− + p+ denote the two-sided probability. Given specific LCL and UCL values,

these probabilities can be obtained from the cdf of the corresponding data distribution and
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µ = µ0 + δσX value.

The behavior of the two-sided ARLδ can be explained by ARL−
δ and ARL+

δ . Specifically,

because p = p− + p+ and ARLδ = 1/p, ARL−
δ = 1/p−, and ARL+

δ = 1/p+, we have

ARLδ = [(1/ARL−
δ ) + (1/ARL+

δ )]−1.

If both ARL−
δ and ARL+

δ are infinite, then ARLδ is infinite; if exactly one of ARL−
δ or ARL+

δ

is infinite, then ARLδ equals the other. If the distribution of X is symmetric, then ARL−
0 =

ARL+
0 = 2ARL0.

1.3 Assumptions and purpose

Three data-distribution assumptions are typically made: (i) the X process is iid; (ii) each X

sample mean is normally distributed; and (iii) the value of σX is known. Of course, these

assumptions are sometimes not true. For example, Pandit and Wu (1983) discuss the case

of (dependent) time-series data and Montgomery (2013, Figures 8-9 and 8-10) discusses non-

normal data. Unknown standard deviations, which need to be estimated, are also frequently

encountered.

Our purpose is to relax the second and third assumptions to investigate the effects on ARL

behavior. For purposes of relaxing Assumption (ii), we take the marginal distribution of X

to be from the Johnson family, allowing us to study the effects of nonnormal skewness and

kurtosis. (See Section 1.4 for background.) For relaxing Assumption (iii), we estimate σX using

the sample standard deviation from a set of m previously obtained (“Phase-I”) in-control X

observations; we vary the value of m, with m going to infinity corresponding to knowing the

value of σX with no error.

We make five Standing Assumptions. (a) The in-control mean µ0 is known. (b) The control

limits are symmetric about the in-control mean; that is, the control limits are µ0 ± kσX . (c)

The control limits are k = 3 standard deviations σX from the mean. (d) When σX is estimated,

the estimate is σ̂X = SX ≡ [
∑m

i=1(Y i − µ0)
2/m]1/2, where the Y observations are Phase-I X

data. (e) The out-of-control data process differs from the in-control process by only a mean

shift; that is, the out-of-control mean is µ = µ0 + δσX , and other process parameters do not
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change. (Notice that δ has no units.)

1.4 Johnson family and standardized moments

In our analyses and Monte Carlo experiments, the X data are iid with marginal distributions

from the Johnson family of distributions (Johnson 1949; Johnson et al. 1994). Although we

could have used other distribution families, the Johnson family is both tractable and general.

The Johnson family can be partitioned into four subfamilies: the two-parameter normal family,

three-parameter lognormal family, four-parameter bounded distributions, and four-parameter

unbounded distributions. After fixing the mean and variance, both bounded and unbounded

distributions have two parameters to determine distribution shape, which is often measured

by (β1, β2), where β1 = α2
3 is the squared skewness, β2 = α4 is the kurtosis, and αi is the ith

standardized moment. Without duplication, the four subfamilies cover the entire feasible part

(i.e., β2 ≥ β1 + 1) of the (β1, β2) plane. All normal distributions lie at the point (0, 3), and all

lognormal distributions lie on a single infinite curve anchored at the normal distribution; the

lognormal curve separates bounded and unbounded distributions, with bounded distributions

having smaller kurtosis values. See, e.g., Dudewicz et al. (2004).

We use the Johnson family to model the higher-level X process rather than the lower-level,

underlying X process, the latter sometimes being referred to as quality measurements. The

two levels are related, of course, in that each X is an equally weighted average of n adjacent

observations X . For iid data, the skewness and kurtosis of the X and X processes are related

in the following well-known proposition.

Proposition 1 (e.g., Johnson et al. 1994) For iid data {X1, . . . , Xn} from a distribution lying

at (β1(X), β2(X)), the sampling distribution of X with sample size n lies at (β1(X), β2(X)),

where β1(X) = β1(X)/n and β2(X) = 3 + (β2(X)− 3)/n.

Proposition 1 is consistent with central limit theorems that say that sample means approach

normality as n goes to infinity. For example, doubling the value of n moves the sampling

distribution of X half-way to normality on the (β1, β2) plane. Proposition 1 implies that,

whatever the distribution of X , the corresponding distribution of X lies at a point that satisfies

β2(X) ≥ β1(X) + 3 − (2/n). A secondary implication is that X can attain all points on the
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feasible part of the (β1, β2) plane only for n = 1.

In the following sections, we consider only the process of the sample mean X, seldom

referring to the underlying data X . Therefore, we henceforth let α3, β1, and β2 denote the

skewness, squared skewness, and kurtosis of the marginal distribution of the sample mean X.

Because of Standing Assumption (e), these values apply to both in-control and out-of-control

data processes. For clarity, however, we retain the X subscript in σX and SX .

Conducting the analysis based on the X, rather than the X , data process has two ad-

vantages. First, multiple X processes can result in the same X process, so thinking in terms

of X reduces the number of factors; in particular, the number n of observations of X that

compose the sample mean X becomes implicit. Second, our results apply to any symmetric

control chart, regardless of the control statistic used. For example, X could be replaced by a

sample range R or a sample standard deviation S (except for situations in which the standard

deviation of R or S is so large that the LCL is negative and adjusted to zero). Unlike X, which

becomes asymptotically normal when n is large, other statistics converge to normality slower.

Nevertheless, in this paper, we present our results assuming that the control statistic is the

sample average X.

1.5 Contributions

Our results are as follows. ARL and SDARL values do not change monotonically with skewness

and kurtosis. In addition, as the distribution shape moves away from normality, and for small

values of m, the ARL and SDARL values sometimes change dramatically, often becoming

infinite even when run lengths are finite with probability one. We provide various tables

showing the relationships. The tables can be used to design an X-chart: For any number of

Phase-I observations m and any skewness and kurtosis of the sample means, one can determine

the ARL and SDARL properties based on the results in this paper. We provide two new

analytical results. Result 1 says that, when the data distribution is bounded, any Phase-I

standard-deviation estimation guarantees infinite ARL values for certain modest values of k.

Result 2 says that, for any symmetric unbounded Johnson distribution, the ARL (and therefore

SDARL) values are infinite for all finite δ values when m = 1 degree of freedom is used to

estimate the standard deviation. The implication of this result is that we can expect large, if
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not infinite, ARL and SDARL values for small m. In this sense, these performance measures

are flawed.

1.6 Organization

The rest of this paper is organized as follows. Section 2 reviews the current literature on the

effects of nonnormality and estimation for control charts. Section 3 shows that symmetric

control limits are not appropriate for bounded distributions with finite m because ARL values

are infinite in many practical settings. Section 4 illustrates the effects of nonnormality and

estimation on the X-chart performance. The asymptotic (infinite m) case of deterministic

control limits is also discussed. Section 5 gives our conclusions.

2 Literature Review

Only one paper has considered the combined effect of nonnormality and estimation—Chen et

al. (2008), which contains early results on which this paper is based. We review here papers

on the effects of nonnormality alone and estimation alone.

2.1 Nonnormality effects

There is a good deal of literature concerning the effects of nonnormality on symmetric She-

whart X control charts with independent quality measurements X . Burrows (1962), Burr

(1967), Schilling and Nelson (1976), Balakrishnan and Kocherlakota (1986), Chan et al. (1988),

Borror et al. (1999), and Chen and Cheng (2007) discuss the nonnormality effects when the

quality measurements in fact follow the Pearson-type, Burr (1942), two unimodal and two

bimodal, symmetric Tukey-λ (Ramberg and Schmeiser 1972), Student’s t, gamma, and John-

son distributions, respectively. All papers agree that nonnormality has significant effects on

control-chart performance.

Several papers suggest using asymmetric control limits for nonnormal data. Five ap-

proaches are common: (i) symmetric probability limits, (ii) normal approximation via the

central limit theorem with large n, (iii) transformation to normality, (iv) design for a specific

known data distribution, and (v) split/weighted-variance methods. The first approach sets the
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control limits as percentiles so that the probabilities above the UCL and below the LCL are

equal. Yourstone and Zimmer (1992) discuss such percentiles for the Burr distribution. Wille-

main and Runger (1996) estimate such percentiles from empirical reference distributions when

the data distribution is unknown. For the second approach, Schilling and Nelson (1976) study

how large the sample size n (within each X observation) of the X chart should be to obtain tail

probabilities close to those for the normal distribution. Schader and Schmid (1989) and Ryan

(1989) discuss a similar sample-size effect on the performance of p and np charts. The third

approach involves the use of transformations. One kind is simple transformation, such as arc-

sin transformations for binomial data and square-root transformations for Poisson data (Ryan

1989 and Ryan and Schwertman 1997). A second kind is to transform a nonnormal random

variable X to a standard-normal random variable via Φ−1(FX(X)), where FX is the cdf of X ,

such as the Q-chart method (Quesenberry 1991a,b,c). The fourth approach includes geometric

midrange and range charts for monitoring the mean and variance of lognormal distributions

(Ferrell 1958) and median, range, scale, and location charts for Weibull distributions (Nelson,

1979). For the fifth approach, Cowden (1957) proposes the split method, a heuristic which

divides a nonsymmetric distribution at its mode into two supposedly normal distributions with

the same mean (the original mode) and appropriately chosen (and likely different) standard

deviations. One of the normals is used for the control chart’s upper limit, and the other is used

for the lower limit. A similar method is the weighted-variance technique of Choobineh and

Ballard (1987). As an alternative to these five approaches for Shewhart charts, Borror et al.

(1999) and Stoumbos and Reynolds (2000) show that exponentially weighted moving average

charts are more robust to nonnormality than are X charts.

2.2 Estimation effects

Most literature on estimation effects assumes that the quality measurements X are iid normal

with an unknown variance σ2
X . Many papers assume that µ0 is also unknown. All references

cited later in this section estimate σX from m subgroups of n Phase-I quality measurements

using σ̂X/
√

n, where σ̂X is an estimate of σX . For a generic subgroup of n quality measure-

ments, let R denote the range and S the sample standard deviation (dividing by n−1 when µ0

is unknown and by n when known). Then choices for σ̂X include unbiased estimators R/d2,n,
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S/c4,ν1+1, and Sp/c4,ν2+1 and biased estimators Sp and c4,ν2+1Sp, where R, S, and Sp are the

average range, average sample standard deviation, and the square root of the pooled sample

variance based on m subgroups (each of size n) of the Phase-I observations. The well-known

bias-adjustment constants d2,n and c4,ν+1 are functions of the sample size n of each X obser-

vation (e.g., Montgomery 2013), where ν denotes the degrees of freedom that σ̂X has. The

values of ν1 and ν2 are: ν1 = n − 1 and ν2 = m(n − 1) when µ0 is unknown and ν1 = n

and ν2 = mn when known. Derman and Ross (1995) propose and show that Sp has a smaller

mean square error (MSE) for estimating σX than the unbiased estimator S/c4,ν1+1. Vardeman

(1999) later proposes the estimator c4,ν2+1Sp for its minimizing the MSE among all estimators

γSp, where γ ∈ R. (Mahmoud et al. 2010 compare different estimators of σX for normal data;

their results are consistent with Vardeman 1999.) Jensen et al. (2006) provide a literature

review of estimation effects.

Perhaps the most-related work in the literature is Ghosh et al. (1981), who consider the

effects of estimation for iid normal data with known in-control mean µ0, a special case of the

situation considered in this paper. They assume that σX is estimated with a χ statistic with

ν degrees of freedom; for example, if σ̂X = Sp, then ν = mn when µ0 is known. Three of their

results are relevant here. (i) As ν goes to infinity, the distribution of the run length converges

to the geometric distribution, corresponding to the case of known control limits. (ii) Although

the run length is finite with probability 1, if k >
√

ν, then ARLδ = ∞ for all values of the

shift δ. If k =
√

ν, then ARL0 = ∞ and ARLδ is finite for δ 6= 0. If k <
√

ν, then ARLδ is

finite for all δ values. (iii) ARL0 increases as ν decreases. Ng and Case (1992), Quesenberry

(1993), Chen (1997), and Chakraborti (2000) also study the run-length distribution for the

normal data case and obtain results consistent with Ghosh et al. (1981).

The control-chart performance measures used to study the estimation effect in most of the

literature are the mean, standard deviation, and percentiles of the run length Nδ. Recent

literature suggests using the chart performance metric SDARL because the distribution of

the conditional ARL, E(Nδ|σ̂X), is right-skewed. The SDARL reflects the variation in the

conditional ARL from practitioner to practitioner with different observed values of σ̂X . Jones

and Steiner (2012) first discuss the sample-size effect on SDARL for risk-adjusted CUSUM

charts. Zhang et al. (2012), Zhang et al. (2013), Saleh et al. (2013), and Saleh et al. (2014) later
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use SDARL to discuss the sample-size effect on estimation errors for geometric, exponential

CUSUM, exponentially weighted moving average, and Shewhart X and X control charts,

respectively. They suggest using both ARL and SDARL, rather than just ARL, for choosing

the value of the Phase-I sample size so as to have a high probability that the conditional ARL

is close to the nominal value.

Some work compares choices of σ̂X based on the control-chart performance when µ0 is

unknown. Del Castillo (1996) shows that Sp is better than S/c4,n in terms of false alarms rates

and ability to detect shifts. Chen (1997), comparing the three unbiased estimators, shows that

Sp/c4,m(n−1)+1 and R/d2,n have the (finite sample) standard deviations of the (unconditional)

run length that are respectively closest and farthest to the limiting values with m infinite; but

the same statement is not true for the ARL. Saleh et al. (2014), comparing the three unbiased

estimators and the two biased estimators, show that the biased estimator c4,m(n−1)+1Sp is the

best for the normal population in terms of having the smallest SDARL and an ARL0 closest

to the ARL0 value with m infinite.

We consider only the estimator σ̂X = SX , defined in Section 1.3, when the value of µ0 is

known. We ignore the subgroup sample size n, so essentially n = 1 and therefore SX = Sp.

Although our numerical results differ from those of other consistent estimators of σX (e.g.,

Sp/c4,m+1 and c4,m+1Sp), our results qualitatively generalize to those consistent estimators.

Extending our conclusions beyond sensitivity analysis to chart design would require considering

the specific estimator of σX .

3 Bounded Distributions and Infinite ARL

In this section we examine properties of the run length Nδ when the X distribution is bounded,

first with known standard deviation in Section 3.1 and then with estimated standard deviation

in Section 3.2. In later sections, we focus on normal, lognormal, and unbounded distributions,

although numerical results for bounded distributions are also given.

When the marginal distribution of X has bounded support, we show that ARLδ may be

infinite for both known and estimated control limits, even when δ is not zero. An implication

of this section, then, is that symmetric control limits often are not appropriate when X has
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bounded support.

3.1 Known Standard Deviation

First, consider the situation in which σX is known; equivalently, m = ∞. The two-sided X-

chart control limits are now the constants µ0 ± kσX . We show that there are many situations

for which ARL is infinite when the data are iid from a bounded distribution. For illustration,

we compute ARLδ values as a function of the skewness α3 over the range of possible values

[−
√

2,
√

2] for the normal-distribution kurtosis value α4 = β2 = 3. The sample means X

then have either normal distributions (when α3 = 0) or Johnson bounded distributions (when

α3 6= 0).

The (unbounded) normal-distribution ARLδ values are always finite; but when the dis-

tribution of X is bounded, the ARLδ values are often infinite. All that is needed is p = 0,

which occurs whenever the support of X lies entirely within the control limits, as illustrated

in Table 1.

Table 1 gives ARL−
δ , ARL+

δ , and ARLδ values for some examples for Johnson data with

kurtosis β2 = 3. Skewness values range over α3 = 0, ±0.2, ±0.4, ±0.6, ±0.8, ±1, ±
√

2, and

shifts range over δ = 0, 0.5, 1,∞. Only non-negative δ values are shown; for any δ value, ARLδ

for the Johnson distribution with skewness α3 equals ARL−δ for the Johnson with skewness

−α3 and the same kurtosis. For each entry, the ARL is the reciprocal of the tail probability,

which is numerically computed from the Johnson cdf.

With Table 1 still in mind, consider some cases that illustrate the effects of skewness. For

left-skewed distributions (i.e., α3 < 0), when α3 is so negative that UCL is larger than the

distribution’s upper bound, then ARL+
δ = ∞. (If the entire distribution is shifted to the

right, however, then the infinity may be avoided. For example, when α3 = −0.6, then ARL+
δ

is infinite for δ = 0 but finite for δ = 1.) When the skewness α3 = −1, the distribution’s

lower bound lies above the LCL; so ARL−
δ , and hence ARLδ, become infinite even for δ = 1.

Similarly, when the X distribution is very right skewed or the positive shift δ is so high that

LCL is less than the distribution’s lower bound, we have ARL−
δ = ∞.

In the normally distributed case, ARLδ is monotonically decreasing in |δ|. With bounded

distributions, however, this monotonicity does not always hold. While it is true that ARL−
δ is

12



Table 1: ARL−
δ , ARL+

δ , and ARLδ for Johnson data with known standard deviation σX ,
kurtosis β2 = 3, skewness α3 = 0, ±0.2, ±0.4, ±0.6, ±0.8, ±1, ±

√
2, and shifts δ = 0, 0.5, 1,∞

δ = 0 δ = 0.5 δ = 1 δ = ∞

α3 ARL−

δ
ARL+

δ
ARLδ ARL−

δ
ARL+

δ
ARLδ ARL−

δ
ARL+

δ
ARLδ ARL−

δ
ARL+

δ
ARLδ

−
√

2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 1
−1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 1
−0.8 277 ∞ 277 12423 ∞ 12423 ∞ ∞ ∞ ∞ 1 1
−0.6 241 ∞ 241 1323 ∞ 1323 17125 4731 3707 ∞ 1 1
−0.4 284 3.3E6 284 1183 3137 859 6523 123 120 ∞ 1 1
−0.2 397 3157 353 1701 335 280 8701 60 60 ∞ 1 1

0 741 741 370 4299 161 155 31574 44 44 ∞ 1 1
0.2 3157 397 353 58515 110 110 2.7E6 36 36 ∞ 1 1
0.4 3.3E6 284 284 5.7E21 85 85 ∞ 30 30 ∞ 1 1
0.6 ∞ 241 241 ∞ 69 69 ∞ 26 26 ∞ 1 1
0.8 ∞ 277 277 ∞ 57 57 ∞ 21 21 ∞ 1 1
1 ∞ ∞ ∞ ∞ 53 53 ∞ 17 17 ∞ 1 1√
2 ∞ ∞ ∞ ∞ 4.7 4.7 ∞ 4.7 4.7 ∞ 1 1

monotonically increasing in δ and that ARL+
δ is monotonically decreasing in δ, Table 1 shows

that ARLδ is not always monotonically decreasing in |δ|; see, for example, the case α3 = −0.4.

Nevertheless, as |δ| increases to infinity, ARLδ approaches one, since eventually the entire

bounded support of X lies outside the control limits.

The values of ARL−
δ , ARL+

δ , and ARLδ change continuously with α3, but are monotonic

in neither α3 nor |α3|. The reason is that the tail probabilities are not well explained by the

third moment. Non-monotonic examples abound throughout Table 1. A persistent pattern in

the table is that highly skewed distributions lead to infinite ARLδ values; as discussed in the

previous paragraph, however, ARLδ = 1 for large enough |δ| values.

3.2 Unknown Standard Deviation

Now consider the unknown σX case. As discussed in Section 1.3, estimation of the standard

deviation is with m iid Phase-I observations Y . Result 1 (below) says that when the data come

from a bounded distribution, the Phase-I estimation causes ARLδ to be infinite whenever k

is not less than a certain value; specifically, ARL0 is infinite whenever k ≥ 1. Conditional

on the estimate of σX , the ARL is infinite whenever the random control limits lie beyond the

distribution’s support; therefore, the unconditional ARL is infinite whenever there is a positive

probability that the estimated control limits enclose the distribution’s support.

13



Result 1 If the data are iid from any bounded distribution, then for every shift δ, the X chart

with estimated control limits µ0 ± kSX has ARLδ = ∞ for every

k ≥ max{µ0 − (a + δσX), (b + δσX)− µ0}
max{µ0 − a, b − µ0}

.

In particular, ARL0 = ∞ for every k ≥ 1.

Proof: Denote the support of the in-control distribution of X by [a, b]. Then a ≤ µ0 ≤ b, so

the support of SX is [0, max{µ0−a, b−µ0}]. The minimum occurs when all m data points are

equal to µ0 and the maximum occurs when all data points are at the end point farthest from

µ0. Let E(Nδ|SX = s) denote the conditional expected run length with estimated standard

deviation s. Then E(Nδ|SX = s) = ∞ whenever µ0 − ks ≤ a + δσX < b + δσX ≤ µ0 + ks,

since then no data point can lie outside the estimated symmetric control limits. Rewriting

the condition yields s ≥ max{µ0 − (a + δσX), (b + δσX) − µ0}/k. This event has positive

probability whenever the upper limit max{µ0 − a, b − µ0} of the support of SX is at least

max{µ0 − (a + δσX), (b + δσX) − µ0}/k. The inequality simplifies to obtain the result. �

4 The Effects of Nonnormality and Estimation

We now study ARL and SDARL values to investigate the effects of the X distribution shape

and the Phase-I sample size when estimating σX . Unlike the emphasis on infinite ARL values

in Section 3, here we focus on computing specific ARL and SDARL values as functions of

the mean shift δ, skewness α3, kurtosis β2, and Phase-I sample size m. Throughout this

section, we take k = 3 and use symmetric charts. In Section 4.1 we consider the effect of

nonnormality—over the entire skewness-kurtosis plane—when the standard deviation σX is

known (and hence, SDARL is 0); consistent with earlier work, we show that ARL values are

sensitive to distribution shape. Section 4.2 deals with the effect of estimating σX using m

Phase-I observations; we observe that—for three symmetric unbounded distributions—ARL

values increase as m decreases, empirically extending the normal-distribution result of Ghosh

et al. (1981), and SDARL goes to zero as m goes to infinity. For the combined effects of

distribution shape and Phase-I sample size, we show that—for the same three symmetric

14



unbounded distributions—the estimation sensitivity (the effect of m on ARLδ) is a complicated

function of kurtosis, decreasing when δ is small and increasing when δ is large (e.g., 2).

4.1 Effects of Nonnormality

This section is concerned with the case in which we vary the distribution shape when the

standard deviation σX is known. We numerically compute ARLδ values as a function of the

skewness α3, kurtosis β2, and shift δ. We consider points across the (skewness, kurtosis) plane.

The results are shown in Figures 1, 2, and 3, which illustrate ARLδ as a function of the kurtosis

only, skewness only, and both skewness and kurtosis, respectively. As throughout this paper,

the results assume the Johnson family of distributions.

4.1.1 Effects of kurtosis

Figure 1 considers the effect of (only) kurtosis by restricting attention to symmetric distribu-

tions, for which α3 = 0. The horizontal axis is the kurtosis β2, from one to sixty; the vertical

axis is the ARLδ on a logarithmic scale. Five curves are shown, corresponding to δ = 0, 1, 2, 3, 6

standard deviations. Only positive δ values are considered since, for symmetric distributions,

ARLδ = ARL−δ. The ARLδ curves are essentially flat to the right of β2 = 60.

� � � � � � �� � �

� �

� � � �

�

� � �
� � 	
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 � � � � �
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Figure 1: ARLδ curves for symmetric distributions, as a function of the kurtosis β2

Although the specific ARL values would change for different k or if we had chosen a family

other than the Johnson, six patterns from Figure 1 are general. First, when |δ| is much less
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than k, ARL changes substantially with distribution shape for small values of the kurtosis.

(Distribution shapes with kurtosis between 1 and 4 are widely different.) Second, for small

values of |δ|, ARLδ goes to infinity as the kurtosis drops toward one. (Recall from Section 3.1

that ARLδ = ∞ whenever the support lies entirely within the control limits.) Third, as kurtosis

increases, ARLδ becomes insensitive to kurtosis. Fourth, ARLδ is not always monotonic in the

kurtosis; for example, ARL0 has a minimum of about 57 close to β2 = 100 (not shown in

Figure 1). Fifth, for symmetric distributions, for δ = k = 3, the probability of X falling

outside the control limits is approximately 1/2, so ARLδ ≈ 2; the deviation from 2 is the

small-probability error that arises when X is outside the other tail’s control limit. Sixth, as δ

grows large (as illustrated by δ = 6) ARLδ goes to one for every k and for every distribution

shape.

4.1.2 Effects of skewness

To study the effects of distribution skewness on ARLδ values for unbounded distributions, we fix

the kurtosis to β2 = 10. The Johnson unbounded skewness values satisfy α3 ∈ [−1.895, 1.895],

where 1.895 is the (approximate) skewness for the lognormal distribution with β2 = 10.

Figure 2, which is analogous to Figure 1, shows the results. The horizontal axis gives the

skewness values; the vertical axis contains the ARLδ values. The four curves correspond to

δ = 0, 0.5, 1, 1.5 standard deviations of mean shift. Only positive values of δ are considered

because, holding kurtosis constant, ARLδ for skewness α3 is equal to ARL−δ for skewness −α3.

Like Figure 1, Figure 2 illustrates some patterns that hold more generally than for Johnson

distributions. Here are three general results. First, for unbounded distributions with σX

known, ARLδ is finite. Second, for fixed skewness α3, ARLδ is not always decreasing in |δ|,
although as |δ| becomes large, ARLδ decreases to one. Third, for fixed shift δ, ARLδ is not

always monotonic in α3.

Table 2 gives ARL−
δ , ARL+

δ , and ARLδ values for the same δ and many of the α3 values as in

Table 1, except that now β2 = 10 and the distributions are unbounded. As with Table 1, Table 2

implies that symmetric control limits are not suitable for skewed distributions. Asymmetric

control limits (e.g., setting the control limits so that the probabilities of falling below and

above the limits are the same) seem to be more appropriate for skewed distributions, in that
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Figure 2: ARLδ curves as a function of the skewness α3 for unbounded Johnson distributions

with kurtosis β2 = 10

Table 2: ARL−
δ , ARL+

δ , and ARLδ for Johnson data with kurtosis β2 = 10, skewness α3 = 0,

±0.5, ±1, ±1.5, ±1.895, and shift δ = 0, 0.5, 1, 1.5

δ = 0 δ = 0.5 δ = 1 δ = 1.5

α3 ARL−

δ
ARL+

δ
ARLδ ARL−

δ
ARL+

δ
ARLδ ARL−

δ
ARL+

δ
ARLδ ARL−

δ
ARL+

δ
ARLδ

−1.895 63 ∞ 63 102 ∞ 102 163 ∞ 163 257 2718 235

−1.5 75 1532 72 123 492 98 195 140 82 304 36 32

−1 91 323 71 150 148 75 240 63 50 373 25 23

−0.5 110 187 69 185 97 63 299 47 40 470 21 20

0 137 137 69 238 75 57 396 39 36 637 19 19

0.5 187 110 69 342 63 53 598 34 32 1003 18 17

1 323 91 71 658 53 49 1265 30 29 2313 16 16

1.5 1532 75 72 4277 45 44 10883 26 26 25606 15 15

1.895 ∞ 63 63 ∞ 38 38 ∞ 22 22 ∞ 13 13

we would likely regain the intuitively appealing property of decreasing ARLδ as |δ| increases.

4.1.3 Effects of skewness and kurtosis

The (β1, β2) two-dimensional effects on ARL are further illustrated in Figure 3—the contour

plot of ARL0 on the (β1, β2) plane—with Subfigure (b) depicting a zoomed-in region (around

the normal (0, 3) point) of Subfigure (a). Figure 3 shows that ARL0 changes substantially and

non-monotonically when (β1, β2) deviates from (0, 3), especially for bounded distributions,

whose ARL0 may be infinite (see Subfigure (b)). The approximate infinite-ARL0 curve in

Subfigure (b) lies below (but not far from) the true infinity curve; due to numerical errors in
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Johnson-distribution fitting, the true infinity boundary is not known.
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Figure 3: Contour plots of ARL0 on the (β1, β2) plane for Johnson data with (a) 0 ≤ β1 ≤ 19
and 1 ≤ β2 ≤ 20 and (b) 0 ≤ β1 ≤ 1 and 2 ≤ β2 ≤ 3.5

4.2 Effects of Estimation

Next we study the case of unknown σX , which is estimated by SX from m Phase-I observations

Y . Since SX is random, the control limits are random, resulting in run lengths with higher

mean (and variance) than those of constant control limits.

We compute the values of ARLδ and SDARL using Monte Carlo simulation and numerical

integration. If simulation is used, the conditional means E(Nδ|SX) are computed from all

sets of generated Phase-I data; then the estimated ARLδ and SDARL are the average and

sample standard deviation of all realizations of E(Nδ|SX), respectively. The standard errors

are negligible, except for small values of m where the ARL and SDARL values approach infinity.

We consider symmetric Johnson data distributions with kurtosis values β2 = 3, 5, 10, shift

values δ = 0, 1, 2, and all positive integers m. For clarity, let ARLδ(m, β2), SDARLδ(m, β2),

and CVARLδ(m, β2) denote the average run length, SDARL, and CVARL, respectively, with

shift δ and estimated control limits µ0 ± 3SX using m Phase-I observations from symmetric

Johnson distributions with kurtosis β2.
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Figure 4: Density plots of the conditional mean E(Nδ|SX) for normal distributions (β2 = 3)
and dot plots for Johnson symmetric distributions with β2 = 5

To gain insight, consider Figure 4, which gives density plots of the conditional mean

E(Nδ|SX) for kurtosis 3 and dot plots for kurtosis β2 = 5, as well as the corresponding values

of ARLδ(∞, β2). The density plots were obtained using numerical integration, and the dot

plots were obtained via Monte Carlo simulation. (The dot plots for β2 = 10 are similar to

those for β2 = 5 and hence not shown here.) The ARL values are the means of these various

conditional-distribution means. All distributions are right skewed, but much more so as m

becomes smaller. As m increases, the more-symmetric distributions converge to the ARLδ

value for m = ∞. For a given number of Phase-I observations m, the distribution shapes do

not differ much as a function of β2, although their means do change.

For the three symmetric Johnson distributions, ARLδ(m, β2) and SDARLδ(m, β2) are illus-

trated in Figure 5 as functions of β2, δ, and m. Table 3 contains detailed values used to create

Figure 5, plus values for small m that do not appear in Figure 5, as well as the CVARLδ(m, β2)

values. The ARL values in Table 3 are reported to various precisions based on three rules: never

are more than four digits reported, never are unknown (because of Monte Carlo sampling error)

digits reported, and the hundredths digit is reported only when the ARL value is less than ten.

The entries with an inequality are possibly infinity. The SDARLδ(m, β2) and CVARLδ(m, β2)
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Figure 5: Plots of ARLδ(m, β2) and SDARLδ(m, β2) as functions of m for Johnson symmetric
distributions

values (if finite) are reported to two digits and in scientific notation except for values less

than 100. When both ARLδ(∞, β2) and SDARLδ(m, β2) are infinite, CVARLδ(m, β2) is not

meaningful and hence no value is reported.

For each value of β2, two points emerge with respect to the estimation effect. First,

as δ increases, both ARLδ(m, β2) and ARLδ(∞, β2) go to one and hence, ARLδ(m, β2) ap-

proaches ARLδ(∞, β2) (except for cases where ARLδ(m, β2) = ∞). Second, as m becomes

small, the ARLδ(m, β2) and CVARLδ(m, β2) values increase quickly (since SDARLδ(m, β2)

increases more quickly than ARLδ(m, β2)). This rapid increase in ARLδ(m, β2) is consistent

with the results of Ghosh et al. (1981) (discussed in Section 2.2) for the normal distribution,

where if m < k2 = 9, then ARLδ(m, β2) = ∞ for all δ values. (Notice that the ARLδ(m, β2)

and squared SDARLδ(m, β2) are the first and second moments for the conditional ARL. If

ARLδ(m, β2) = ∞, then SDARLδ(m, β2) = ∞.) The rapid increase also makes it difficult to

determine ARLδ(m, β2) for small values of m. We report values obtained by Monte Carlo ex-
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perimentation, but the true values depend on the extreme right tail of the distribution of SX ;

such realizations of σ̂X = SX yield p(σ̂X) in Equation (1) quite close to zero. In fact, the Monte

Carlo experiments cannot determine whether the true ARLδ(m, β2) and SDARLδ(m, β2) values

are infinity or simply large. On the other hand, we can make a definite statement about the

special case m = 1. Consistent with Ghosh et al. (1981) for normal data, our Result 2 shows

analytically that ARLδ(1, β2) = ∞ for unbounded symmetric Johnson data.

Result 2 Consider the control-chart procedure with control limits µ0 ± kSX estimated from a

single (m = 1) Phase-I observation and data from any unbounded symmetric Johnson distri-

bution. The following three results hold.

(a) If k < 1, then ARLδ < ∞ for all δ.

(b) If k > 1, then ARLδ = ∞ for all δ.

(c) If k = 1, then ARLδ = ∞ for δ = 0 and ARLδ < ∞ for all δ 6= 0.

The proof is in the Appendix.

That a bounded data distribution can lead to ARLδ = ∞, as stated in Result 1, is not

surprising. The surprise is that, as stated in Result 2 for unbounded distributions, the use of

estimation makes possible unconditional ARLδ = ∞, even while the ARLδ values conditional

on any realization of σ̂X are finite with probability one for unbounded distributions.

Figure 5 and Table 3 also show the simultaneous effects of nonnormality and estimation.

The substantial nonnormality effects on the control-chart performance with estimated control

limits are similar to those with known control limits as shown in Figure 1. In particular,

the curves in Figure 1 being convex or concave correspond to the curves’ order in Figure 5.

Estimation sensitivity is a complicated function of kurtosis, decreasing when δ is small and

increasing when δ is large (e.g., 2).

5 Summary and Conclusions

Performance-measure values ARL, SDARL, and CVARL for symmetric X control charts are

highly sensitive to both nonnormality and estimation error, as measured by skewness and kur-

tosis for nonnormality and by the number of Phase-I observations for estimation error. Our
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nonnormality results show that all three performance-measure values behave in nonmonotonic,

and therefore nonintuitive, ways when the data distribution is asymmetric. To regain mono-

tonicity, asymmetric limits that mimic the data distribution seem reasonable. Our estimation

results show that—for performance-measure values to be close to the performance-measure

values when the standard deviation is known—the number of Phase-I observations needs to be

(maybe surprisingly) large.

First we considered nonnormality, providing analytical and numerical results for ARL. For

bounded distributions, the ARLδ values can be infinite when the run length itself is infinite.

For unbounded distributions, the ARLδ values are always finite if the standard deviation of

X is finite. When finite, the ARLδ values can change nonmonotonically with both skewness

and kurtosis. Practitioners need to be aware that nonnormality can dramatically affect ARLδ

values.

Second, we considered estimation error, providing analytical, numerical, and Monte Carlo

results. For estimated standard deviation of bounded data distributions, we show in Result 1

(where we relax the assumption that the control limits are three standard deviations from the

mean) that ARLs are infinite whenever k is not less than a certain value. Specifically, in-control

ARLs are infinite when the control-chart limits are at least one estimated standard deviation

from the center line. For unbounded data distributions, our tables and figures illustrate the

sensitivity to the number m of Phase-I observations; the ARLδ and/or SDARL values can be

infinite when m is small. In our Result 2 (again k not confined to 3), we extend the normality

results of Ghosh et al. (1981) to symmetric unbounded Johnson data, but only for the special

case of a single Phase-I observation, implying that all ARLδ values go to infinity as the number

of Phase-I observations decreases to m = 1 (for all k > 1).

An implication is that all three performance measures—ARL, SDARL, and CVARL—are

flawed. Although the probability of an infinite run length is zero, all three performance mea-

sures become infinite relatively easily, while being invisible to every practitioner. In practice,

infinite ARL0 is good only when the corresponding ARLδ is small for δ 6= 0. However, when

ARL0 is infinite, ARLδ is usually infinite for all values of δ or huge for small values of |δ|. More-

over, for normal data and any finite δ, ARLδ, and hence SDARL, are infinite for all m < k2.

Any adequate performance measure should indicate that larger values of m are better.
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Appendix: Proof of Result 2

When m = 1, there is only one Phase-I observation, denoted by Y . In this simple case, the

standard-deviation estimate is SX = |Y |. The in-control data follow an unbounded symmetric

Johnson distribution with location parameter ξ = µ0 = 0, scale parameter λ > 0, and shape

parameters γ = 0 (for a symmetric distribution) and φ > 0. Since ARLδ is functionally

independent of the standard deviation, without loss of generality set λ = 1. The probability

density function (pdf) of SX is then, for s > 0,

fS
X

(s) = 2fY (s) = φ

√
2

π(s2 + 1)
exp

{
− 1

2

[
φ ln(s +

√
s2 + 1 )

]2}
,

where fY (·) is the pdf of Y (Johnson et al. 1994).

Let N , NU , and NL denote the run lengths for two-sided, upper one-sided, and lower

one-sided X charts with control limits µ0 ± kSX , µ0 + kSX , and µ0 − kSX , respectively.

Since N = min(NU , NL), every realization of N is no larger than NU or NL and hence,

E(N ) ≤ min(E(NU), E(NL)). Furthermore, because of symmetry, E(NU) with mean shift δ is

the same as E(NL) with mean shift −δ. When δ = 0, E(N ) = 0.5E(NU) = 0.5E(NL).

To prove Result 2, we first prove the following results for E(NU), valid for all finite δ:

(a) If k < 1, then E(NU) < ∞.

(b) If k > 1, then E(NU) = ∞.

(c) If k = 1, then E(NU) = ∞ for δ ≤ 0 and E(NU) < ∞ for δ > 0.

The proofs for these E(NU) results proceed as follows. Using the definition of NU , taking

the expected value of all realizations of the estimated standard deviation, setting µ0 = 0,

transforming from an in-control unbounded Johnson random variable V to a standard normal

random variable Z = φ ln(V +
√

V 2 + 1), and expressing the expected value as an integral
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using the pdf of SX yields

E(NU) = ES
X

[ 1

P{X > µ0 + kSX}

∣∣∣ SX

]
= ES

X

[ 1

P{X > kSX}

∣∣∣ SX

]

= ES
X

[ 1

P{V > kSX − δ}
∣∣∣ SX

]

= ES
X

[ 1

P{Z > φ ln
(
kSX − δ +

√
(kSX − δ)2 + 1

)
}

∣∣∣ SX

]

= ES
X

[
1

1 − Φ
[
φ ln

(
kSX − δ +

√
(kSX − δ)2 + 1

) ]
∣∣∣∣∣ SX

]

=

√
2

π
φ

∫ ∞

0

1

[1− Φ(b)]
√

s2 + 1
exp

{
− 1

2

[
φ ln(s +

√
s2 + 1 )

]2}
ds,

where b ≡ φ ln
(
ks− δ +

√
(ks − δ)2 + 1

)
. By Birnbaum (1942) and Pollak (1957), the bounds

for a standard-normal upper-tail probability 1 − Φ(t) are

√
2

π

e−
t
2

2

t +
√

t2 + 4
< 1 − Φ(t) <

√
2

π

e−
t
2

2

t +
√

t2 + 8
π

, t > 0.

We now prove part (a), where k < 1. If δ ≤ 0, we have ks − δ +
√

(ks − δ)2 + 1 > 1 and

hence b > 0. Therefore,

E(NU) ≤ φ

∫ ∞

0

b +
√

b2 + 4√
s2 + 1

exp

{
1

2

[
b2 −

[
φ ln(s +

√
s2 + 1 )

]2
]}

ds

= φ

∫ ∞

0

φ ln
(
ks − δ +

√
(ks − δ)2 + 1

)
+

√[
φ ln

(
ks − δ +

√
(ks − δ)2 + 1

)]2
+ 4

√
s2 + 1

exp

{
1

2

[[
φ ln

(
ks − δ +

√
(ks − δ)2 + 1

)]2 −
[
φ ln(s +

√
s2 + 1 )

]2]
}

ds

< ∞.

In the above equation, the upper bound of E(NU) is finite because for all s > −δ/(1 − k),

0 < ks − δ < s and hence, 0 < ln
(
ks − δ +

√
(ks − δ)2 + 1

)
< ln(s +

√
s2 + 1).
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If δ > 0, we have b > 0 for all s > δ/k. Therefore,

E(NU) =

√
2

π
φ

∫ δ/k

0

1

[1− Φ(b)]
√

s2 + 1
exp

{
− 1

2

[
φ ln(s +

√
s2 + 1 )

]2}
ds

+

√
2

π
φ

∫ ∞

δ/k

1

[1 − Φ(b)]
√

s2 + 1
exp

{
− 1

2

[
φ ln(s +

√
s2 + 1 )

]2}
ds

< 2 +

√
2

π
φ

∫ ∞

δ/k

1

[1− Φ(b)]
√

s2 + 1
exp

{
− 1

2

[
φ ln(s +

√
s2 + 1 )

]2}
ds

< ∞.

In the above equation, the first inequality holds because 1 − Φ(b) > 0.5 for b < 0. The second

inequality holds because ks − δ < s for k < 1 and δ > 0, and the proof is similar to that for

the case of k < 1 and δ ≤ 0.

In part (b), we consider the case of k > 1. For any finite δ,

E(NU) ≥ φ

∫ ∞

0

φ ln
(
ks − δ +

√
(ks − δ)2 + 1

)
+

√[
φ ln

(
ks − δ +

√
(ks − δ)2 + 1

)]2
+ 8/π

√
s2 + 1

exp

{
1

2

[[
φ ln

(
ks − δ +

√
(ks − δ)2 + 1

)]2 −
[
φ ln(s +

√
s2 + 1 )

]2]
}

ds

≥ φ

∫ ∞

max{0,δ/(k−1)}
(s2 + 1)−0.5

{

φ ln
(
ks − δ +

√
(ks − δ)2 + 1

)
+

√[
φ ln

(
ks − δ +

√
(ks − δ)2 + 1

)]2
+ 8/π

}

exp

{
1

2

[[
φ ln

(
ks − δ +

√
(ks − δ)2 + 1

)]2 −
[
φ ln(s +

√
s2 + 1 )

]2]
}

ds.

In the last inequality, the right-hand side is infinite because for all s > δ/(k − 1), ln
(
ks − δ +

√
(ks − δ)2 + 1

)
> ln(s +

√
s2 + 1) > 0. Hence, when k > 1, E(NU) = ∞ for any finite δ.
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In part (c), we consider the case of k = 1. If δ ≤ 0, then

E(NU) =

√
2

π
φ

∫ ∞

0

1

1 − Φ
[
φ ln

(
s − δ +

√
(s − δ)2 + 1

)] · 1√
s2 + 1

exp
{
− 1

2

[
φ ln(s +

√
s2 + 1 )

]2}
ds,

≥ φ

∫ ∞

0

φ ln
(
s − δ +

√
(s − δ)2 + 1

)
+

√[
φ ln

(
s − δ +

√
(s − δ)2 + 1

)]2
+ 8/π

√
s2 + 1

exp

{
1

2

[[
φ ln

(
s − δ +

√
(s − δ)2 + 1

)]2 −
[
φ ln(s +

√
s2 + 1 )

]2
]}

ds.

If δ < 0, the right-hand side of the last inequality is infinity and hence, E(NU) = ∞. If δ = 0,

E(NU) ≥ φ

∫ ∞

0

φ ln
(
s +

√
s2 + 1

)
+

√[
φ ln

(
s +

√
s2 + 1

)]2
+ 8/π

√
s2 + 1

ds

≥ φ

∫ ∞

0

1√
s2 + 1

ds = ∞.

Therefore, for k = 1, if δ ≤ 0, then E(NU) = ∞. If δ > 0, we can prove that E(NU) < ∞. The

proof is similar to that in part (b) for δ > 0.

Using the results for E(NU), we have the following results for E(NL), valid for all finite δ:

(a) If k < 1, then E(NL) < ∞.

(b) If k > 1, then E(NL) = ∞.

(c) If k = 1, then E(NL) = ∞ for δ ≥ 0 and E(NL) < ∞ for δ < 0.

Since E(N ) ≤ min(E(NU), E(NL)), the proof for Result 2 is complete by combining the results

for E(NU) and E(NL). �
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Table 3: ARLδ(m, β2), SDARLδ(m, β2), and CVARLδ(m, β2) values for symmetric Johnson

data distributions as functions of kurtosis β2, shift δ, and number of Phase-I observations m

β2 = 3 β2 = 5 β2 = 10

δ m ARL SDARL CVARL ARL SDARL CVARL ARL SDARL CVARL

1 ∞ ∞ ∞ ∞ ∞ ∞

2 ∞ ∞ 1.6E5 1.4E9 8.6E3 1.1E4 7.5E7 6.7E3
3 ∞ ∞ 2.0E4 1.1E8 5.5E3 3.1E3 1.4E7 4.4E3

4 ∞ ∞ 5.2E3 1.9E7 3.7E3 1.4E3 4.3E6 3.1E3

5 ∞ ∞ 2.1E3 5.4E6 2.5E3 8.0E2 1.8E6 2.3E3
6 ∞ ∞ 1.1E3 1.9E6 1.7E3 5.3E2 9.0E5 1.7E3

7 ∞ ∞ 7.1E2 8.2E5 1.2E3 3.9E2 5.0E5 1.3E3
8 ∞ ∞ 5.1E2 4.1E5 8.0E2 3.1E2 3.1E5 1.0E3

9 ∞ ∞ 3.9E2 2.2E5 5.6E2 2.5E2 2.0E5 7.9E2
10 1.174E6 ≥ 1E137 ≥ 9E130 325 1.3E5 3.9E2 218 1.4E5 6.3E2

11 1.039E5 ≥ 9E110 ≥ 9E105 280 8.0E4 2.8E2 192 9.8E4 5.1E2

0 12 3.103E4 ≥ 2E89 ≥ 7E84 249 5.2E4 2.1E2 174 7.2E4 4.2E2
15 5,888 ≥ 1E42 ≥ 2E38 196 1.7E4 89 139 3.4E4 2.4E2

20 2,090 1.2E6 5.7E2 158.9 4.8E3 30 112.7 1.3E4 1.2E2
30 1,005 5.9E3 5.9 132.7 9.4E2 7.1 93.1 3.6E3 39

50 637.3 1.2E3 1.8 116.8 1.8E2 1.6 81.3 8.3E2 10

100 477.4 4.3E2 .89 107.0 61 .57 74.2 1.4E2 1.9
150 437.2 2.9E2 .66 104.1 44 .43 72.2 65 .90

200 418.9 2.3E2 .55 102.7 32 .31 71.2 41 .57
300 401.7 1.7E2 .43 101.3 29 .28 70.3 27 .39

400 393.5 1.4E2 .37 100.6 24 .24 69.8 21 .31

500 388.7 1.3E2 .33 100.2 21 .21 69.5 18 .26
1000 379.4 85 .22 99.4 15 .15 69.0 12 .17

∞ 370.4 0 0 98.6 0 0 68.5 0 0

1 ∞ ∞ ∞ ∞ ∞ ∞

2 ∞ ∞ 1.5E5 1.4E9 8.9E3 1.1E4 7.4E7 6.8E3

3 ∞ ∞ 1.8E4 1.0E8 5.8E3 3.0E3 1.4E7 4.5E3

4 ∞ ∞ 4.4E3 1.8E7 4.1E3 1.3E3 4.2E6 3.3E3
5 ∞ ∞ 1.7E3 4.9E6 3.0E3 7.3E2 1.8E6 2.5E3

6 ∞ ∞ 8.1E2 1.8E6 2.2E3 4.7E2 8.9E5 1.9E3
7 ∞ ∞ 4.7E2 7.4E5 1.6E3 3.3E2 4.9E5 1.5E3

8 ∞ ∞ 3.2E2 3.6E5 1.1E3 2.5E2 3.0E5 1.2E3

9 1.030E4 ≥ 1E151 ≥ 1E147 2.3E2 1.9E5 8.4E2 2.0E2 2.0E5 9.8E2
10 1,276 ≥ 4E121 ≥ 3E118 179 1.1E5 6.2E2 170 1.3E5 7.9E2

11 571.6 ≥ 2E96 ≥ 3E93 147 6.9E4 4.7E2 146 9.7E4 6.6E2
1 12 357.9 ≥ 2E75 ≥ 5E72 126 4.5E4 3.5E2 128 7.1E4 5.6E2

15 174.6 ≥ 5E29 ≥ 3E27 91 1.4E4 1.6E2 97 3.3E4 3.4E2
20 107.0 1.2E3 11 68.8 3.8E3 56 72.9 1.3E4 1.7E2

30 74.2 1.6E2 2.1 54.2 6.9E2 13 55.7 3.5E3 63

50 58.6 61 1.0 46.0 1.1E2 2.4 45.7 7.8E2 17
100 50.3 30 .59 41.3 27 .66 40.0 1.3E2 3.2

150 48.0 22 .46 39.9 19 .47 38.4 53 1.4
200 46.9 18 .38 39.2 15 .39 37.6 30 .80

300 45.9 14 .31 38.6 12 .30 36.9 19 .51

400 45.4 12 .26 38.2 9.9 .26 36.5 14 .38
500 45.1 10 .23 38.1 8.8 .23 36.3 11 .32

1000 44.5 7.2 .16 37.7 6.0 .16 35.9 7.3 .20
∞ 44.0 0 0 37.3 0 0 35.5 0 0

Continued on next page
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Table 3 – continued from previous page

β2 = 3 β2 = 5 β2 = 10

δ m ARL SDARL CVARL ARL SDARL CVARL ARL SDARL CVARL

1 ∞ ∞ ∞ ∞ ∞ ∞

2 ∞ ∞ 1.3E5 1.2E9 9.5E3 1.0E4 7.4E7 7.0E3
3 ∞ ∞ 1.4E4 8.8E7 6.5E3 2.8E3 1.4E7 4.8E3

4 ∞ ∞ 3.0E3 1.5E7 4.9E3 1.2E3 4.2E6 3.6E3
5 ∞ ∞ 1.0E3 3.9E6 3.8E3 6.2E2 1.8E6 2.8E3

6 ∞ ∞ 4.5E2 1.4E6 3.0E3 3.8E2 8.7E5 2.3E3

7 ∞ ∞ 2.4E2 5.5E5 2.4E3 2.5E2 4.8E5 1.9E3
8 ∞ ∞ 1.4E2 2.7E5 1.9E3 1.8E2 2.9E5 1.6E3

9 31.8 ≥ 3E136 ≥ 1E135 92 1.4E5 1.5E3 1.4E2 1.9E5 1.4E3
10 21.2 ≥ 2E106 ≥ 9E104 65.8 7.9E4 1.2E3 110 1.3E5 1.2E3

11 16.9 ≥ 5E81 ≥ 3E80 49.8 4.7E4 9.4E2 90 9.2E4 1.0E3
2 12 14.5 ≥ 2E61 ≥ 1E60 39.6 3.0E4 7.5E2 76 6.8E4 8.9E2

15 11.2 ≥ 2E17 ≥ 2E16 24.4 9.1E3 3.7E2 50.3 3.1E4 6.2E2

20 9.26 17 1.9 16.1 2.2E3 1.4E2 32.3 1.2E4 3.6E2
30 7.95 7.4 .93 11.5 3.5E2 30 20.2 3.2E3 1.6E2

50 7.18 4.1 .58 9.38 43 4.5 13.9 6.6E2 48
100 6.70 2.4 .36 8.25 6.2 .75 10.8 94 8.8

150 6.56 1.9 .28 7.94 3.8 .47 9.96 34 3.4

200 6.50 1.6 .24 7.80 3.0 .38 9.59 16 1.7
300 6.43 1.2 .19 7.65 2.3 .30 9.26 8.4 .91

400 6.40 1.1 .17 7.59 1.9 .25 9.10 5.4 .59
500 6.38 .94 .15 7.55 1.7 .22 9.01 4.0 .44

1000 6.34 .65 .10 7.47 1.1 .15 8.83 2.2 .25
∞ 6.30 0 0 7.39 0 0 8.65 0 0
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