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Abstract

We construct a respiratory syndromic surveillance mechanism for the respiratory syndrome. The data

used for illustration are the daily counts of respiratory syndrome sampled from the National Health Insur-

ance Research Database in Taiwan. The population size is 160,000. We first fit a regression model with

an ARIMA (autoregressive integrated moving average) error term to the data and then construct CUSUM

(cumulative sum) residual charts to detect the aberration in visit frequencies of respiratory syndrome. The

day-of-the-week, seasonal, and holiday effects are considered in the regression model. Our results show

that the CUSUM residual chart is useful in detecting abnormal increases of respiratory symptoms.

Keywords: ARIMA; CUSUM chart; regression analysis; respiratory syndrome; syndromic surveillance;

time series

1 Introduction

An epidemic, or outbreak, means that the occurrence of a disease is at an unexpectedly

high frequency (Baxter et al., 2000). Recent epidemics, e.g., SARS in 2003, avian influenza in

2003-2005 and H1N1 in 2009, have caused deaths of many people in the world. Early detection

of outbreaks is important for timely public health response to reduce morbidity and mortality.

By early detecting the aberration of diseases, sanitarians can study or research into the causes of

diseases as soon as possible and prevent the cost of the society and medical treatments. Traditional
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disease-reporting surveillance mechanisms might not detect outbreaks in their early stages because

laboratory tests usually take long time to confirm diagnoses.

Syndromic surveillance was developed and used to detect the aberration of diseases early

(Henning, 2004). The syndromic surveillance mechanism is to collect the baseline data of prodro-

mal phase symptoms and detect the aberration of diseases from the expected baseline by placing

the variability of data from the expected baseline. Such surveillance methods include the SPC

(statistical process control) methods, scan statistics, and forecasting methods (Tsui et al. 2008).

See Section 2 for literature review.

In this work, we study the implementation of CUSUM (CUmulative SUM) residual chart

for detecting the outbreak of the respiratory syndrome in Taiwan. Since the daily visits of the

respiratory syndrome are time series data with seasonal effect, we use a regression model with an

ARIMA (AutoRegressive Integrated Moving Average) error term to model the daily counts from

ambulatory care clinic data. The CUSUM of residuals are then plotted in the CUSUM chart for

detecting unusual increase in daily visits. The test data are the 2005-2008 ambulatory care clinic

data from the National Health Insurance Research Database (NHIRD) in Taiwan.

This paper is organized as follows. In Section 2, we review related literature. In Section 3, we

summarize the data, propose a regression model whose error term follows an ARIMA model, and

construct the CUSUM chart using the residuals. The regression model is fitted to the daily counts

data of respiratory symptoms in years 2005 and 2006. In Section 4, we assess the performance

of the CUSUM residual chart by applying it to monitor the daily counts data in 2007 and 2008.

The conclusion is given in Section 5.

2 Literature review

We discuss here the syndromic surveillance methods including the forecast-based, scan statis-

tics, and SPC-based methods. Detailed reviews can be found in Tsui et al. (2008, 2011) and

Unkel et al. (2012).

The forecast-based methods are useful to model non-stationary baseline data. To detect

aberration, an upper threshold value is determined using the fitted forecast model. When the

actual value of the response variable exceeds the threshold, an outbreak alarm is sent. Two

popular forecasting methods are time-series and regression models. Goldenberg et al. (2002) used

the AR (AutoRegressive) model to forecast the over-the-counter medication sales of the anthrax
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and built the upper prediction interval to detect the outbreak. Reis and Mandl (2003) developed

generalized models for expected emergence-department visit rates by fitting historical data with

trimmed-mean seasonal models and then fitting the residuals with ARIMA models. Lai (2005)

used three time series models (AR, a combination of growth curve fitting and ARMA error, and

ARIMA) to detect the outbreak of the SARS in China.

The scan statistics have been widely used in retrospective detection of temporal clustering of

diseases (Glaz et al. 2001). For example, Heffernan et al. (2004) applied the scan statistic method

to monitor respiratory, fever diarrhea and vomiting syndromes by the chief complaint data of the

emergency department. This method scans a window of time; if an observed cluster of diseases

is significantly unusual for the underlying probability model, a signal is sent. Scan statistics are

also used for prospective detection of unusual clusters, where the time-window length can vary

over a range of values (Kulldorff 2001, Naus and Wallenstein 2006).

Recently the control charts have been applied in health-care and public-health surveillance

(Woodall 2006). The SPC methods were first applied in the industrial statistical control (Mont-

gomery 2005). Since the Shewhart chart is insensitive at detecting small shifts, CUSUM and ex-

ponentially weighted moving average (EWMA) charts are more commonly used in public-health

surveillance than the Shewhart chart. Hutwagner et al. (1997) developed a computer algorithm

based on the CUSUM scheme to detect salmonella outbreaks using the laboratory-based data.

Morton et al. (2001) applied Shewhart, CUSUM and EWMA charts to detect and monitor

the hospital-acquired infections. Their results showed that when used together, Shewhart and

EWMA work well for monitoring bacteremia and multiresistant organism rates and that CUSUM

and Shewhart charts are suitable for monitoring surgical infection.

Modifications of CUSUM charts were proposed for the incidence rate with a changing popu-

lation size. Some modifications are based on a Poisson model (e.g., Mei et al. 2011, Jiang et al.

2012) and some are based on a Bernoulli model (e.g., Sego et al. 2008). If a Poisson model is

used, the counts of incidents at regular time intervals are needed. The Bernoulli CUSUM chart

can detect increase in incidence rate earlier than the Poisson CUSUM chart because the Bernoulli

CUSUM chart monitors sequential Bernoulli data without waiting for aggregated counts (Shu et

al. 2011).

Some literature modeled the baseline data with a forecast model before applying an SPC

scheme because the baseline data may not be independent and identically distributed and the mean

of the data may be a function of time. Rogerson and Yamada (2004) applied a Poisson CUSUM
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residual chart to detect the lower respiratory tract infections for 287 census tracts simultaneously,

where the baseline data were fitted by logistic regression models. Miller et al. (2004) used the

regression model with autoregressive error to fit the influenzalike illness data in an ambulatory

care network, where the regression terms include weekend, holiday and seasonal adjustments (sine

and cosine functions). They then used the standardized CUSUM residual chart for detecting

the outbreak. Fricker et al. (2008) applied the adaptive regression model with day-of-the-week

effects using an 8-week sliding baseline and then used the CUSUM chart of the adaptive regression

residuals. They showed that this approach performed better than the Early Aberration Reporting

System (EARS) for baseline data with day-of-the-week effects.

Literature comparing the three types of methods exists. Cowling et al. (2006) compared time

series, regression, and CUSUM models using influenza data from Hong Kong and the US. They

found that the time series model was the best in the Hong Kong setting, while both the time

series and CUSUM models worked equally well on the US data. Woodall et al. (2008) showed

that the CUSUM chart approach is superior to the scan statistics. Han et al. (2010) compared

CUSUM, EWMA and scan statistics for surveillance data following Poisson distributions. Their

results showed that CUSUM and EWMA charts outperformed the scan statistic method.

3 Methods

Here we discuss the implementation of CUSUM residual charts for respiratory syndromic

surveillance. Before implementing the CUSUM residual chart, a regression model with an ARIMA

error term is fitted to the daily counts of respiratory syndrome. The test data are the 2005 to

2008 daily counts of respiratory syndrome from the National Health Insurance Research Database

(NHIRD) in Taiwan. Section 3.1 introduces the data source, Section 3.2 summarizes the data,

Section 3.3 shows the regression model for the respiratory daily counts, and Section 3.4 shows the

monitoring scheme, CUSUM residual chart.

3.1 Data source

The data used in this study are the 2005 to 2008 daily counts (i.e. the number of daily visits)

of respiratory syndrome for 160,000 people sampled from the National Health Insurance Research

Database (NHIRD) by the Bureau of National Health Insurance, Taiwan. Patients’ diagnoses in

NHIRD were encoded using the ICD-9-CM (International Classification of Diseases, 9th Revision,
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Clinical Modification Reference) code. In this study, the ICD-9 codes of the respiratory syndrome

are adopted from the syndromic classification criteria of the Centers for Disease Control and

Prevention (CDC) in the United States (CDC 2003) as listed in Appendix A.

3.2 Data summary

Here we summarize the daily-counts data of respiratory syndrome from 2005 to 2008 with

population size 160,000. Figure 1, the run chart of the daily counts from 2005 to 2008, shows

that the daily counts are time-series data with seasonal variation. The epidemic peak period for

the respiratory syndrome is from November to April next year.

Figure 1: The daily counts of the respiratory syndrome from 2005 to 2008

Besides the month-of-the-year effect discussed above, the daily counts also have the day-of-

the-week and holiday effects. Figure 2 provides a closer look of Figure 1 with time zone from

January 14 to February 16 in 2006 in Subfigure 2(a) and April 1 to 17 in 2006 in Subfigure 2(b).

Subfigure 2(a) shows the day-of-the-week effect: for a given week, the daily count is highest on

Monday (unless it is a holiday) and lowest on Sunday because most clinics are closed on Sunday.

The holiday effect is shown in both Subfigures 2(a) and 2(b). Subfigure 2(a) shows that the daily

counts are yearly lowest during the Chinese New Year holidays (January 29 to 31, the first three

days in the Chinese New Year) because the clinic service of the outpatient department usually

is not available during this period. Subfigure 2(b) shows that the daily count also drops in the

national holidays to about the same level as that on Sunday.
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Figure 2: Subfigure (a) shows the daily counts of the respiratory syndrome from January 14 to
February 16 in 2006; Subfigure (b) shows the daily counts from April 1 to April 17 in 2006 with
April 5 (Wednesday) being a national holiday

3.3 Regression models with an ARIMA error term

Since the daily counts are time series data with seasonal variation, we use the regression

model with an ARIMA error term to fit the daily counts data for the respiratory syndrome. For

normality, we use the Box-Cox transformation to transform the daily counts data. The general

form of the regression model is

Wt = µt + εt, t = 1, 2, . . . , (1)

where Wt = Y λ
t is the transformed response variable, λ is a constant, Yt denotes the daily count

for the respiratory syndrome in day t, µt is the mean response depending on a set of predictor

variables (e.g., the day of the week) and εt is the error term following an ARIMA(p, d, q) process

with non-negative integers p, d, and q referring to the orders of autoregressive, integrated, and

moving-average parts in the ARIMA model (Box et al. 1994).

The predictor variables are set based on the day-of-the-week, month-of-the-year, holiday, ty-

phoon, and trend effects. For the day-of-the-week effect, we set dummy variables D1 to D6 to

stand for Monday to Sunday, excluding the reference day Wednesday. For the month-of-the-year

effect, dummy variables M1 to M11 stand for January to December, excluding the reference month

June. For the holiday effect, we set dummy variables CB2, CB1, C, C4, C5, and C6 to stand for

the day that is two days before, just before, within the first three days of, the fourth day of, the
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fifth day of, and the sixth day of the Chinese New Year, respectively. We also set dummy variables

D, Dten, and H to denote the Dragon-Boat Festival, the National Day, and the other national

holidays, and set HA to denote the day after one of these holidays (except the Chinese-New-Year

holidays). The dummy variables T and TA stand for a typhoon day and the day after, respec-

tively. The sine and cosine functions are used in the model to show the seasonal effect. Finally, we

include the trend variable t and the interaction terms (e.g., the interaction effect between typhoon

and Monday is denoted by T∗D1). In summary, the mean response is modeled as

µt = β0 +

6∑

i=1

βiDi +

11∑

j=1

β6+jMj + β18CB2 + β19CB1 + β20C + β21C4 + β22C5 + β23C6

+β24D + β25Dten + β26H + β27HA + β28T + β29TA + β30sin(
2πt

365.25
)

+β31cos(
2πt

365.25
) + β32CB2∗D1 + β33CB2∗D7 + β34CB1∗D1 + β35CB1∗D7

+β36C∗D1 + β37C∗D7 + β38C4∗D1 + β39C4∗D7 + β40C5∗D1 + β41C5∗D7

+β42C6∗D1 + β43C6∗D7 + β44D∗D1 + β45D∗D7 + β46Dten∗D1 + β47Dten∗D7

+β48H∗D1 + β49H∗D7 + β50HA∗D1 + β51HA∗D7 + β52T∗D1 + β53T∗D7

+β54TA∗D1 + β55TA∗D7 + β56t. (2)

Once the fitted regression model with a fitted ARIMA error term is obtained, the residuals

can be used to construct CUSUM charts for monitoring abnormal increases in the respiratory-

syndrome frequency.

3.4 CUSUM residual charts

The CUSUM chart is a useful tool to monitor the occurrence of epidemics. The residuals

calculated from the fitted regression model with an ARIMA error term can be used to construct an

upper one-sided standardized CUSUM chart (Montgomery 2005) for detecting abnormal increases

in daily counts of respiratory syndrome.

The CUSUM value at time t, called C+
t , is defined as

C+
t = max(0, Rt/σR − k + C+

t−1), t = 1, 2, . . . , (3)

where C+
0 is the starting value of the CUSUM statistic, Rt = Wt − Ŵt is the residual at time

t, Ŵt is the prediction of Wt, σR is the standard deviation of the residual Rt, and the constant

7



k is half of the shift amount in mean. The value of σR can be estimated by the square root of

the mean square error (MSE) of the fitted regression model. In our application, we set C+
0 = 0

and k = 0.5 (for detecting the situation where the mean of the residual increases by one standard

deviation σR).

Like Miller et al. (2004), we set the upper control limit h of the upper one-sided standardized

CUSUM chart so that the in-control average run length (denoted as ARL0) is 50. To compute

the value of h, we use the Siegmund’s approximation (Siegmund 1985 and Montgomery 2005, p.

396) for the average run length (ARL):

ARLδ ≈
e−2∆b + 2∆b − 1

2∆2
,

where ARLδ is the ARL when the process mean shifts by δ standard deviations, b = h + 1.166,

∆ = δ − k. By letting ARL0 = 50 (with δ = 0), the upper control limit h = 2.225.

4 Results

To illustrate the monitoring method discussed in Section 3, we use the 2005 to 2006 daily

counts data to fit a regression model in Section 4.1. The fitted regression model is then applied to

the 2007 and 2008 data to construct upper one-sided standardized CUSUM charts in Section 4.2

for purposes of illustration and validation.

4.1 The fitted regression model

We use the regression model with an ARIMA error term, shown in Section 3.3, to fit the

2005 to 2006 daily counts data of respiratory syndrome. The estimated value of λ in the Box-Cox

transformation is λ = 0.96. The level of significance is set to 5%.

Table 1 lists the estimates of regression coefficients and the associated p-values. Only signifi-

cant predictor variables are listed. For better prediction, all interaction terms that have data are

included in the fitted model even if their p-values are higher than 5%. (Some interaction terms

have no data so that they are not included in the model and some have only a few data resulting
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in large p-values.) The fitted ARIMA(p, d, q) model for the error term is

ε̃t =
(1− ω̂1B)(1 − ω̂2B

7)(1− ω̂3B
9 − ω̂4B

11 − ω̂5B
12 − ω̂6B

17 − ω̂7B
22)at

(1 − b̂1B)(1 − b̂2B7)

= φ̂1ε̃t−1 + φ̂7ε̃t−7 + φ̂8ε̃t−8 + (1−
30∑

k=1

θ̂kBk)at, (4)

where B is the backward shift operator and φ̂’s and θ̂’s are

φ̂1 = b̂1, φ̂7 = b̂2, φ̂8 = −b̂1b̂2, θ̂1 = ω̂1, θ̂7 = ω̂2, θ̂8 = −ω̂1ω̂2, θ̂9 = ω̂3, θ̂10 = −ω̂1ω̂3,

θ̂11 = ω̂4, θ̂12 = ω̂5 − ω̂1ω̂4, θ̂13 = −ω̂1ω̂5, θ̂16 = −ω̂2ω̂3, θ̂17 = ω̂6 + ω̂1ω̂2ω̂3,

θ̂18 = −(ω̂1ω̂6 + ω̂2ω̂4), θ̂19 = −ω̂2ω̂5 + ω̂1ω̂2ω̂4, θ̂20 = ω̂1ω̂2ω̂5, θ̂22 = ω̂7,

θ̂23 = −ω̂1ω̂7, θ̂24 = −ω̂2ω̂6, θ̂25 = ω̂1ω̂2ω̂6, θ̂29 = −ω̂2ω̂7, θ̂30 = ω̂1ω̂2ω̂7,

and the rest of θ̂k’s are zero. (5)

The fitted ARIMA model has an AR order p = 8, integrated order d = 0, and MA order q = 30.

The estimates b̂’s and ω̂’s are listed in Table 1. The fitted distribution of the white noises {at} is

normal with mean 0 and variance being the MSE = 6961.2. The residual analysis (not reported

here) indicates that the assumption of identically and independently normally distributed white

noises {at} is appropriate.

Table 1: The coefficient estimates of the fitted regression model and their associated p-values,
where the standard-error estimates (S.E.) for the coefficient estimates are shown in parentheses

Parameter Estimate (S.E.) p-value Parameter Estimate (S.E.) p-value

b1 0.709 (0.048) < 0.0001 β24(D) −210.4 (47.6) < 0.0001
b2 0.943 (0.017) < 0.0001 β25(Dten) −293.0 (66.4) < 0.0001
ω1 0.222 (0.067) 0.0009 β26(H) −547.3 (30.6) < 0.0001
ω2 0.573 (0.042) < 0.0001 β27(HA) 275.3 (31.0) < 0.0001
ω3 −0.125 (0.039) 0.0013 β28(T ) −252.4 (45.9) < 0.0001
ω4 −0.138 (0.038) 0.0003 β29(TA) 176.5 (40.1) < 0.0001
ω5 −0.087 (0.039) 0.0246 β30(sin) 175.6 (54.1) 0.0012
ω6 −0.150 (0.039) 0.0001 β31(cos) 301.1 (51.9) < 0.0001
ω7 0.136 (0.039) 0.0005 β33(CB2∗D7) −19.7 (103.1) 0.8486

β0(Intercept) 1317 (75.6) < 0.0001 β34(CB1∗D1) −143.6 (105.2) 0.1723
β1(D1) 476.3 (45.7) < 0.0001 β36(C∗D1) −545.5 (75.4) < 0.0001
β6(D6) −674.3 (46.3) < 0.0001 β37(C∗D7) 375.6 (81.2) < 0.0001
β7(M1) −112.1 (43.4) 0.0098 β41(C5∗D7) 31.1 (76.3) 0.6837
β8(M2) −218.3 (38.2) < 0.0001 β43(C6∗D1) −208.1 (102.4) 0.0421

β18(CB2) 256.4 (71.7) 0.0003 β46(Dten∗D1) −236.7 (92.6) 0.0106
β19(CB1) 540.2 (73.6) < 0.0001 β49(H∗D7) 510.2 (60.8) < 0.0001
β20(C) −1217.9 (49.9) < 0.0001 β50(HA∗D1) −205.6 (61.1) 0.0008
β21(C4) −605.1 (54.6) < 0.0001 β51(HA∗D7) −169.1 (57.9) 0.0035
β23(C6) 288.8 (67.2) < 0.0001 β52(T∗D1) −729.4 (81.4) < 0.0001
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In Table 1, Column 1 lists the nine time-series and ten regression coefficients (with the cor-

responding predictors indicated in parentheses), Column 2 lists the estimates of the coefficients

in Column 1 and their standard-error estimates in parentheses, Column 3 lists the associated

p-values, and Columns 4 to 6 are the same as Columns 1 to 3 but for the rest of 19 regression

coefficients.

Table 1 shows that the coefficient estimate for D1 (Monday) is positive (476.3) and the co-

efficient estimate for D6 (Sunday) is negative (−674.3), meaning that the mean daily count is

expected to increase by 476.3 on Monday and decrease by 674.3 on Sunday. The coefficient esti-

mates for CB2 and CB1 (indicators for the days that are two days and one day before the Chinese

New Year, respectively) are positive, meaning that the mean daily counts increase when the Chi-

nese New Year holidays are approaching. The coefficient estimate for C (indicator for the first

three days in the Chinese New Year) is −1217.9 resulting the lowest mean daily counts in a year,

because only medical service of emergency departments is available during these three holidays.

Comparing coefficient estimates for C4 (indicators for the fourth day in the Chinese New Year)

and C6 (indicator for the sixth day in the Chinese New Year), we see that the daily count increases

gradually after the first three holidays in the Chinese New Year. Comparing the national holi-

day variables, the coefficient estimates for D (the Dragon-Boat Festival) and Dten (indicator for

the National Day) are higher than the coefficient estimate of H (indicator for the other national

holidays). The coefficient estimate for T shows that the reduction effect of typhoons in the daily

count is about the same as that for the predictors D and Dten. The coefficients of HA (indicator

for the day after a holiday) and TA (indicator for the day after a typhoon) show that the mean

daily count after a holiday or day off due to typhoon goes up but is lower than the mean daily

count on Monday. The coefficient value of TA is smaller than that of HA because typhoons often

occur in summer, an epidemic off-peak period. The coefficients of the paired interaction terms

show that if a holiday, typhoon day, or the day before/after them is on Monday or Sunday, the

mean daily count is different from that in other weekdays.

4.2 CUSUM residual charts

We apply the upper one-sided standardized CUSUM chart (Section 3.4) on the 2007 and

2008 respiratory data based on the fitted regression model (Section 4.1) with the 2005 and 2006

data. Recall that the CUSUM value is C+
t = max(0, Rt/σR − k + C+

t−1
), t = 1, 2, . . ., where the

residuals Rt is the difference between Wt and its fitted value Ŵt and σR is estimated by
√

MSE
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Figure 3: The CUSUM charts for (a) January 1 to April 30 and (b) October 1 to December 31
in 2007

=
√

6961.2 = 83.4.

Figure 3 contains the CUSUM charts for peak periods (January 1 to April 30 in Subfigure 3(a)

and October 1 to December 31 in Subfigure 3(b)) in 2007. A few alarms are shown in Subfig-

ure 3(a): January 2 to 6, January 30 to February 8, and April 9. In Figure 3(b), the alarms

occur in October 7, October 15, and December 4. Figures 4 and 5 show the CUSUM charts for

peak periods in 2008 (January 1 to April 30 for Figure 4 and September 1 to December 31 for

Figure 5). In Figure 4, the alarms occur during January 2 to 9, and February 1 to 10, while in

Figure 5, the alarms occur during September 29 to 30. Since the CUSUM charts are constructed

based on real data, it is difficult to identify whether these alarms are false. All the alarms seem to

be reasonable except the one occurring during September 29 to 30 in 2008. Because of typhoon,

September 29 (Monday) 2008 was not a work day. However, many clinics were still open since

the weather was better than expected. Consequently the number of visits is higher than that

computed from the fitted model. Such a false alarm is caused by an unpredicted event and can

be identified easily.

5 Conclusions

This work discusses the implementation of CUSUM residual charts for monitoring daily counts

of respiratory syndrome. The population size is 160,000. Before using the CUSUM chart, we fit

a regression model with an ARIMA error term to the daily counts data. The numerical results

indicate that the CUSUM residual chart seems to work well in showing abnormal increases in
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Figure 4: The CUSUM chart from January 1 to April 30 in 2008

Figure 5: The CUSUM chart from September 1 to December 31 in 2008

daily counts of respiratory syndrome.

We conclude this section by discussing three issues:

1. Some research uses the weekly counts data, rather than daily counts, to eliminate the day-

of-the-week effect. Our numerical results, however, show that the model for weekly counts

is not much simpler. Since the weekly data are not as effective to identify outbreaks as daily

data, this work chooses to use the daily data.

2. Our fitted regression model is based on historical data of the past two years. The time

window can be longer so that more data can be used for model fitting. The shortage though

is that the coefficient estimates would have larger variance and hence the prediction interval

would be wider. Furthermore, the behavior of daily counts may not be the same each year,

using historical data that are long ago may hurt the prediction accuracy for the future

observations.

3. In this work, some interaction terms can not be included in the regression model because of

12



lack of data. To overcome this situation, one way is to include more historical data for model

fitting. The payoff is inducing more variation in parameter estimates as discussed in the

previous issue. Another way is to modify the regression model based on expert experiences

so that the interaction terms with no data can be included in the model.
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Appendix A: Respiratory-syndrome ICD-9-CM code

In this study, we adopt the respiratory syndrome definitions from the syndromic classification

criteria of the Centers for Disease Control and Prevention (CDC) in the United States (CDC 2003).

The ICD-9 codes of the respiratory syndrome are listed in Table 2.

Table 2: The list of respiratory ICD-9-CM code
020.3 020.4 020.5 021.2 022.1 460 462 463 464.00 464.01 464.10 464.11
464.20 464.21 464.30 464.31 464.4 464.50 464.51 465.0 465.8 465.9 466.0 466.11
466.19 478.9 480.8 480.9 482.9 483.8 484.5 484.8 485 486 490 511.0
511.1 511.8 513.0 513.1 518.4 518.84 519.2 519.3 769 786.00 786.06 786.1
786.2 786.3 786.52 799.1 075 381.00 381.01 381.03 381.04 381.4 381.50 381.51
382 382.0 382.00 382.01 382.02 382.4 382.9 461.0 461.1 461.2 461.3 461.8

461.9 493.00 493.01 493.02 493.10 493.11 493.12 493.90 493.91 493.92 511.9 514
518.0 518.81 518.82 782.5 784.1 786.05 786.07 786.09 786.50 786.51 786.59 786.7
786.9 003.22 031.0 031.8 031.9 032.0 032.1 032.2 032.3 032.89 032.9 033.0
033.1 033.8 033.9 034.0 052.1 055.1 055.2 073.0 073.7 073.8 073.9 079.0
079.1 079.2 079.3 079.6 079.81 098.6 114.5 114.9 115.00 115.05 115.09 115.10
115.15 115.90 115.95 115.99 116.0 116.1 117.1 117.3 117.5 130.4 136.3 480.0
480.1 480.2 481 482.0 482.1 482.2 482.30 482.31 482.32 482.39 482.40 482.41
482.49 482.81 482.82 482.83 482.84 482.89 483.0 483.1 484.1 484.3 484.6 484.7
487.0 487.1 487.8
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