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Abstract

We consider the joint economic-statistical design of X and R control charts under

the assumption that the quality measurement and the in-control time have Johnson and

Weibull distributions. The Johnson distribution is general in that it can be made to fit

all possible values of skewness and kurtosis. The four parameters—the sample size n,

time h between successive samples, and the control factors k1 and k2 for the X and R

charts—are determined so that the mean hourly loss-cost is minimized under constrains

on the Type I and II error probabilities. We have generalized the Costa model to ac-

commodate the Johnson and Weibull distributions. Sensitivity to nonnormality, shift,

and Weibull scale parameter are considered in our analysis. Our sensitivity analysis

shows that the optimal design parameters are sensitive to nonnormality. Comparisons

of the fully economic and economic-statistical designs are given.

Keywords: Economic-statistical design, Johnson distribution,R chart, X chart, Weibull

distribution

1 Introduction

The X and R control charts are SPC (statistical process control) tools used to monitor

the production process and detect in-control to out-of-control transitions attributable to

assignable causes. A production process often operates in the in-control state for a period

of time. However, when an assignable cause, such as aging effects or wear, eventually occurs,
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it may shift the process mean and/or the process variance to out-of-control values. When

the process is out of control, the rate of nonconformity increases and the production cost

increases. The X chart is useful for monitoring a change in the process mean. The R

chart is used to monitor a change, especially an increase, in the process variance. After

the assignable causes are identified and verified, an out-of-control action plan is activated

to eliminate them, bring the process back into a state of control, and find the underlying

root cause of the problem. The X and R charts should be used simultaneously because it

is essential to maintain control over both the process mean and process variability.

When X and R control charts are used jointly, four parameters—sample size n, time h

between successive samples, and factors k1 and k2—must be determined. Since Duncan [1]

first proposed the economic design of the X chart for normally distributed quality charac-

teristics, numerous studies on the X chart, R chart, and joint design of X and R charts

have been published ([2], [3], [4]). The literature on the joint design of X and R charts can

be grouped into three categories: statistical, economic, and economic-statistical designs.

The statistical design chooses optimal design values under desired Type I and II error

probability constraints. In this category, Saniga [5] proposed the joint statistical design

for X and R control charts. Bai and Choi [6] and Chan and Cui [7] provided asymmetric

control limits for X and R control charts for skewed populations. De Magalhães et al. [8]

proposed a joint statistical design of adaptive X and R charts.

The economic design chooses optimal design values so that the expected hourly loss-

cost is minimized. Saniga [9] first proposed an economic model for X and R control charts,

assuming that the occurrence of one assignable cause precludes the occurrence of the other.

In a later paper, Saniga [10] investigated the effects of alternate process models. Saniga

and Montgomery [11] developed models for a process subject to a single assignable cause,

assuming that its occurrence results in a simultaneous shift in the process mean and variance.

Jones and Case [12] presented an economic model, based on Duncan’s cost model, which

assumes that the occurrence times for the two assignable causes are independently and

exponentially distributed. Likewise, Costa’s model [13] assumed that the two assignable

causes (resulting in shifts in the mean and variance) occur independently but Costa’s model

is based on the Lorenzen-Vance model [14]. Costa’s work employed an algorithm by Rahim

[15] that determines the optimal X and R chart parameters based on these assumptions.

Following Duncan’s approach, Costa and Rahim [16] provided an economic design of X
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and R control charts under Weibull shock models for controlling normal variable quality

characteristics. Like Banerjee and Rahim [17], they allowed for a non-uniform sampling

interval by assuming a Weibully distributed time to failure. Ohta et al. [18] proposed

an economic model for time-varying control charts in online monitoring of the mean and

variance of a normally distributed quality characteristic.

The economic-statistical design chooses design parameter values that minimize the ex-

pected hourly loss-cost under constraints on the Type I and II error probabilities—or equiv-

alently, under constraints on in-control and out-of-control average run lengths. Although

the loss-cost for the economic-statistical design is higher than that of the economic design,

the economic-statistical design can prevent high risks on having Type I and II errors [19].

Saniga [20] developed an economic-statistical design for Shewhart-type control charts and

applied it to the joint determination of X and R chart parameters under the assumption

that the quality characteristic measurement and in-control time have normal and exponen-

tial distributions. McWilliams et al. [21] presented an algorithm and FORTRAN code,

based on the Lorenzen-Vance model [14], for joint determination of X and R chart para-

meters or X and S chart parameters, assuming that the occurrence of a single assignable

cause results in a simultaneous shift in the process mean and process variance.

Most literature on the joint economic-statistical design of X and R charts makes two

assumptions: (i) the quality characteristic follows a normal distribution; and (ii) when the

process is in control, the time that will elapse before the occurrence of an assignable cause

has an exponential distribution. In many data processes, assumption (i) may not hold,

e.g., Example 2 of Chen and Schmeiser [22]. Several studies have discussed the effect of

nonnormality on the control limits ([23], [24], [25]).

Several authors have published work on nonnormal quality measurements for various

chart types. Lashkari and Rahim [26] consider the CUSUM chart, and Nagendra and Rai

[27] and Rahim [28] consider the economic design of X charts. All of this work models

the probability density function of the quality measurement X by the first four terms of

the Edgeworth series, which are functions of the first four moments. Because the normal

distribution is a special case of the Edgeworth series, the work of these authors may be

seen as a generalization on the normality assumption. An alternate approach is employed

by Burr [23], Yourstone and Zimmer [25] and Chou et al. [29], who model X as a Burr

distribution [30] using the moment method. The advantage of the Burr distribution is that
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it has a closed-form cdf (cumulative distribution function), which simplifies computations of

the Type I and II error probabilities. The disadvantage is that because the Burr distribution

is right skewed, unlike the Edgeworth series, it strictly limitsX to a nonnormal distribution.

For nonnormal data, another alternative (besides the Burr distribution and Edgeworth

series) is to model the quality measurement having a Johnson distribution [31]. The advan-

tage of the Johnson family (including normal, lognormal, bounded, and unbounded types)

is that it covers the entire feasible part of the (β1, β2) plane, where β1 denotes the squared

skewness and β2 the kurtosis. All lognormal (β1, β2) fall on the lognormal curve. The region

above the lognormal curve consists of bounded Johnson distributions, denoted by SB. The

region below, which consists of unbounded Johnson distributions, we denote SU . For each

point (β1, β2), there is one corresponding Johnson distribution ([32], page 36). All (β1, β2)

for the Edgeworth series fall on a curve below the lognormal curve; all (β1, β2) for the Burr

distribution form a region that is above the Weibull curve in the Pearson (
√
β1, β2) plane

([32], pages 29 and 687). The Johnson family accommodates a wide range of skewness and

kurtosis.

Our sensitivity analysis, presented in Section 3 of this paper, also shows that nonnor-

mality has a significant effect on the design parameters and hence should not be ignored.

Furthermore, because the exponential distribution is memoryless, it may not accurately

model the behavior of the assignable causes. In contrast, the Weibull distribution has three

advantages: numerous distribution shapes (including the exponential shape), a nonconstant

hazard rate, and a closed-form cdf.

The present research employs a joint economic-statistical approach. We choose parame-

ter values that minimize the mean hourly loss-cost while maintaining reasonable Type I and

Type II error probabilities. We extend the Costa cost model so that the quality characteris-

tic measurement X and the in-control time have Johnson and Weibull distributions. In this

way, we generalize on previous work in the joint design of X and R charts, which assumes

the quality characteristic to be normally distributed and the in-control time to be expo-

nentially distributed. We also avoid the disadvantages associated with these assumptions,

which we have described above.

The rest of this paper is organized as follows. In Section 2, we discuss the loss-cost

function and constraints under the Johnson and Weibull assumptions. In Section 3, we

perform sensitivity analysis to determine the effects of nonnormality, shift, and Weibull scale
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parameter on the optimal parameters. Comparisons of the fully economic and economic-

statistical designs are also given. Section 4 gives our conclusions. Appendix I lists key

notations used in this paper. Appendix II contains a profile of the Johnson distribution

family.

2 The Cost Model

Our cost model extends the work of Costa [13] by assuming that the quality characteristic

measurement X has a Johnson distribution and the time until an assignable cause occurs

follows a Weibull distribution. We choose Costa’s model because it allows for independent

occurrences of the two assignable causes of variation. The production process is assumed

to start in an in-control state, where the quality measurement X has mean µ0, standard

deviation σ0, skewness α3 (= E[(X−µ0)/σ0]
3) and kurtosis α4 (= E[(X−µ0)/σ0]

4). When

assignable cause 1 occurs, the process mean µ shifts from µ0 to µ0 + δσ0, where δ ∈ R

and δ 6= 0. When assignable cause 2 occurs, the process standard deviation σ shifts from

σ0 to γσ0, with γ > 1. The two assignable causes occur independently. The production

process is shut down during the assignable-cause search and during repair time. The elapsed

time Ti before assignable cause i occurs follows the Weibull(θ, λi) distribution with mean

(1/λi)
1/θΓ(1 + 1/θ), where θ and λi are the shape and scale parameters (i = 1, 2) and

Γ(·) is the gamma function. Since assignable causes 1 and 2 occur independently, Tmin

= min(T1, T2) has a Weibull(θ, λ) distribution, where λ = λ1 + λ2. It follows that the

duration of the in-control state has a Weibull(θ, λ) distribution.

To detect a shift in the process mean and/or process variance, a sample of n independent

quality characteristic measurements X1, ..., Xn is taken at intervals of h hours. Values of

the sample averageX and range R = X(n)−X(1) are recorded in the X and R charts, where

X(n) and X(1) denote the largest and smallest observations in the sample. The production

process is deemed out of control under the condition that (i) X falls outside the X-chart

control limits µ0 ± k1σ0/
√
n; or/and (ii) the range R exceeds the R-chart upper limit k2σ0.

The R-chart lower limit is set to zero for simplicity. When a point (X or R) falls outside

the control limits, a signal is recorded in the appropriate chart, and the quality-control

engineers try to locate an assignable cause. In this case, the quality-control engineers try

to determine whether there is an assignable cause. If such an assignable cause is identified,
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then appropriate action is taken on the production process to restore the in-control state.

In an economic-statistical design, the four design parameters n, h, k1, and k2 are chosen

so that the expected hourly loss-cost is minimized under constraints on the Type I and II

error probabilities. (The values of the mean shift δ and the variance shift γ are assumed

known so that the optimal values of n, h, k1, and k2 can be computed.) The expected hourly

profit is defined as E(C)/E(T ), where E(C) is the expected net profit in a production cycle

and E(T ) is the expected cycle length. A production cycle starts with an in-control state,

enters the out-of-control state, and ends when the assignable cause(s) are removed. Based

on [13],

E(T ) = (1/λ)1/θ Γ(1 + 1/θ) + TX + TR + TXR + αsD0 +D1,

where TX is the expected duration of an out-of-control process mean and in-control process

variance, TR is the expected duration of an out-of-control process variance and in-control

process mean, and TXR is the expected duration of an out-of-control process mean and

out-of-control process variance. Furthermore, α, the joint Type I error probability for the

X and R control charts, can be computed as

α = P{ |X − µ0| > k1σ0/
√
n or R > k2σ0 | µ = µ0, σ = σ0 }. (1)

The number s of samples taken during the in-control state is

s =
∞
∑

i=0

i P{ih ≤ Tmin < (i+ 1)h} =
∞
∑

i=1

e−λ(ih)θ

, (2)

as shown in McWilliams [33]. The parametersD0 andD1 represent the expected search time

for a false alarm and the expected search and process adjustment time for the occurrence

of the first and/or second assignable causes.

Using Costa’s logic [13] and the fact that the duration of the in-control state is Weibully

distributed, we can compute TX , TR, and TXR. Suppose that the process goes out-of-control

during the mth sampling interval. Then there are three possible explanations, or cases: (i)

only the process mean is out-of-control; (ii) only the process variance is out-of-control; (iii)

both the process mean and the process variance are out of control.

First, consider TX , the expected duration during a production cycle of the out-of-control

mean/in-control variance state. Let U denote the actual duration, so that TX = E[U ]. Since
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U is nonzero only when assignable cause 1 occurs before assignable cause 2, we know a priori

that E[U |case(ii)] = 0. In case (i), there are two possibilities: either assignable cause 1 is

detected before any shift in the variance or assignable cause 1 is detected after a shift in

the variance. When the first possibility occurs, the expected duration during a production

cycle of the out-of-control mean/in-control variance state equals

A1 =
∞
∑

m=0

∞
∑

t=0

[(t+ 1)h− τ1] (1 − p1)
t p1

{

FT1
[(m+ 1)h]− FT1

(mh)
}

{

1 − FT2
[(m+ t+ 1)h]

}

,

where

p1 = P
{

|X − µ0| > k1σ0/
√
n or R > k2σ0 |µ = µ0 + δσ0, σ = σ0

}

(3)

is the joint power of the X and R control charts when only the process mean shifts,

τi = E[Ti −mh | mh < Ti < (m+ 1)h] =

∫ (m+1)h
mh (ti −mh)fTi

(ti) dti
FTi

[(m+ 1)h]− FTi
(mh)

is the mean time between the occurrence of the ith assignable cause and its last sampling

time, i = 1, 2, and FTi
and fTi

are the cdf and pdf (probability density function) of the

Weibully distributed random variable Ti.

On the other hand, if the second possibility in Case (i) occurs, the expected duration

during a production cycle of the out-of-control mean/in-control variance state equals

A2 =
∞
∑

m=0

∞
∑

t=0

[(t+ 1)h− τ1 + τ2](1− p1)
t+1

{

FT1
[(m+ 1)h]− FT1

(mh)
}

{

FT2
[(m+ t+ 2)h]− FT2

[(m+ t+ 1)h]
}

.

For Case (iii), if the mean shifts before the variance, the expected duration during a pro-

duction cycle of the out-of-control mean/in-control variance state is then

A3 =
∞
∑

m=0

∫ (m+1)h

mh

∫ (m+1)h

t1
(t2 − t1)fT2

(t2)fT1
(t1)dt2dt1.
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Therefore, the expected total time in which only the mean is out of control is

TX = A1 +A2 + A3. (4)

The derivation of TR is analogous to that of TX . For Case (i), the expected time in which

only the variance is out of control (abbreviated as ETV) is zero. For Case (ii), ETV equals

B1 when the mean does not shift before assignable cause 2 is detected and B2, otherwise,

where

B1 =
∞
∑

m=0

∞
∑

t=0

[(t+ 1)h− τ2] (1− p2)
t p2

{

FT2
[(m+ 1)h]− FT2

(mh)
}

{

1 − FT1
[(m+ t+ 1)h]

}

and

B2 =
∞
∑

m=0

∞
∑

t=0

[(t+ 1)h− τ2 + τ1](1− p2)
t+1

{

FT2
[(m+ 1)h] − FT2

(mh)
}{

FT1
[(m+ t+ 2)h]− FT1

[(m+ t+ 1)h]
}

.

Notice that

p2 = P
{

|X − µ0| > k1σ0/
√
n or R > k2σ0 |µ = µ0, σ = γσ0

}

(5)

is the joint power when only the process variance shifts. For Case (iii), ETV equals B3

when the variance shifts before the mean, where

B3 =
∞
∑

m=0

∫ (m+1)h

mh

∫ (m+1)h

t2

(t1 − t2)fT1
(t1)fT2

(t2)dt1dt2.

Hence, the expected total time in which only the variance is out of control is

TR = B1 + B2 +B3. (6)

Computation of TXR, the expected time in which both the process mean and variance

are out of control (abbreviated as ETMV), also occurs in three steps. For Case (i), when
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the variance goes out of control before assignable cause 1 is detected, ETMV equals

C1 =
∞
∑

m=0

∞
∑

t=0

[h/p3 − τ2](1− p1)
t+1

{

FT1
[(m+ 1)h] − FT1

(mh)
}

{

FT2
[(m+ t+ 2)h]− FT2

[(m+ t+ 1)h]
}

.

Likewise, in Case (ii), if the mean goes out of control before assignable cause 2 is detected,

ETMV equals

C2 =
∞
∑

m=0

∞
∑

t=0

[h/p3 − τ1](1− p2)
t+1

{

FT2
[(m+ 1)h] − FT2

(mh)
}

{

FT1
[(m+ t+ 2)h]− FT1

[(m+ t+ 1)h]
}

.

In Case (iii), ETMV equals C3a if the mean shifts before the variance and C3b, otherwise,

where

C3a =
∞
∑

m=0

E[(m+ 1)h− T2 | mh < T1 < T2 < (m+ 1)h] P{mh < T1 < T2 < (m+ 1)h}

+
∞
∑

m=0

∞
∑

t=1

(t− 1)h(1− p3)
t+1 p3 P{mh < T1 < T2 < (m+ 1)h}

=
∞
∑

m=0

∫ (m+1)h

mh

∫ (m+1)h

t1

[(m+ 1)h− t2]fT1
(t1)fT2

(t2)dt2dt1

+
∞
∑

m=0

h(1/p3 − 1) P{mh < T1 < T2 < (m+ 1)h}

and

C3b =
∞
∑

m=0

E[(m+ 1)h− T1 | mh < T2 < T1 < (m+ 1)h] P{mh < T2 < T1 < (m+ 1)h}

+
∞
∑

m=0

∞
∑

t=1

(t− 1)h(1− p3)
t+1 p3 P{mh < T2 < T1 < (m+ 1)h}

=
∞
∑

m=0

∫ (m+1)h

mh

∫ t1

mh
[(m+ 1)h− t1]fT1

(t1)fT2
(t2)dt2dt1

+
∞
∑

m=0

h(1/p3 − 1) P{mh < T2 < T1 < (m+ 1)h}.
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Notice that

p3 = P
{

|X − µ0| > k1σ0/
√
n or R > k2σ0 |µ = µ0 + δσ0, σ = γσ0

}

(7)

is the joint power when both the process mean and variance shift. Therefore, the total

expected time in which both the mean and variance shift is

TXR = C1 +C2 +C3, (8)

where C3 = C3a + C3b.

Similarly, the expected net profit of the entire cycle is

E(C) = V0[(1/λ)1/θΓ(1 + 1/θ)] + V1TX + V2TR + V3TXR

−(a1 + a2n)[(1/λ)1/θΓ(1 + 1/θ) + TX + TR + TXR]/h− a3 − a4 α s,

where V0, V1, V2, and V3 are the profit per hour produced while the process is in control,

while only the process mean is out of control, while only the process variance is out of

control, and while both the mean and variance are out of control. The constants a1 and a2

represent the fixed and variable costs per sample; a3 represents the expected cost of locating

and eliminating assignable causes 1 and/or 2; and a4 represents the search cost associated

with each false alarm.

The hourly profits V0, V1, V2, and V3 depend on the defect rate, defined as P{|X−µ0| >
3.5σ0}. Specifically, we set V0 = V − 1000 P{|X − µ0| > 3.5σ0|µ = µ0, σ = σ0}, V1 =

V −1000 P{|X−µ0| > 3.5σ0|µ = µ0 +δσ0, σ = σ0}, V2 = V −1000 P{|X−µ0| > 3.5σ0|µ =

µ0, σ = γσ0}, and V3 = V −1000 P{|X−µ0| > 3.5σ0|µ = µ0 +δσ0, σ = γσ0}. Here, V is the

profit per hour when all items fall within the specification limits µ0±3.5σ0. Therefore, each

.001 increase in the defect rate decreases the profit per hour by one dollar. The multipliers

1000 (associated with the defect cost) and 3.5 (associated with the specification limits) were

chosen arbitrarily and can be specified by the user.

Following [13], we define the expected hourly loss-cost as

F = V0 − E(C)/E(T ).
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In the joint economic-statistical design, the design parameters n, h, k1, and k2 are chosen to

minimize the expected hourly loss-cost associated with a production cycle under constraints

on the Type I and II error probabilities α and β. Notice that the Type II error probability β

equals one minus the joint power, defined in Equations (3), (5), and (7). That is, β equals

1 − p1 if µ 6= µ0 and σ = σ0, 1 − p2 if µ = µ0 and σ > σ0, and 1 − p3 if µ 6= µ0 and

σ > σ0. Let r1 and r2 denote the upper bounds for α and β, respectively. Then the design

parameters n, h, k1, and k2 are determined by solving the optimization problem:

min F (9)

s.t. α < r1

β < r2

n ∈ {2, 3, ...}, h > 0, k1 > 0, k2 > 0.

Since the objective function F is not unimodal with respect to the design parameters n, h,

k1, and k2, we cannot use optimization methods designed for unimodal functions. Therefore,

we use the grid search method to determine the optimal values n∗, h∗, k∗1 and k∗2 of n, h,

k1, and k2, as in [21]. The Type I and II error probabilities α and β can be easily computed

only for special cases, e.g., normal population, because α and β depend upon the joint

distribution of X̄ and R. Hence, we compute α and β via simulation experiments.

3 Sensitivity Analysis

In this section, we conduct simulation experiments to determine the effect of the input

variables on the values of the optimal design parameters. Specifically, we investigate how

changes in the mean shift δ, the variance shift γ, the Weibull scale parameters λ1 and λ2,

and the nonnormality (α3, α4) affect the values of the sample size n, the sampling interval

h, and the factors k1 and k2. Based on this sensitivity analysis, we compare the performance

of the economic-statistical and fully economic designs.

Tables 1 through 4 employ four distinct pairs of skewness and kurtosis values, corre-

sponding to four distributions: normal ((α3, α4) = (0,3) in Table 1), bounded Johnson

((α3, α4) = (2, 6) in Table 2), lognormal ((α3, α4) = (2, 10.8634) in Table 3), and un-
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bounded Johnson ((α3, α4) = (5, 100) in Table 4). Equations (1), (3), (5), and (7) show

that the values of α and β, and hence n∗, h∗, k∗1, and k∗2, are functionally independent of the

Johnson mean µ0 and standard deviation σ0. In the simulation experiments, we arbitrarily

set µ0 = 0 and σ0 = 1.

In each table, the mean-shift δ ∈ {1, 2}, the variance-shift γ ∈ {1.5, 2}, the Weibull

scale parameters (λ1, λ2) ∈ {(.0141, .1273), (.0707, .0707), (.1273, .0141)}, and the Type I

and Type II error probability upper bounds (r1, r2) ∈ {(1, 1), (.1, .1), (.0027, .005)}. All

together, there are 144 (=4·2·2·3·3) experimental points. For each experimental point, the

optimal design parameters n∗, h∗, k∗1, and k∗2 are calculated using the grid search method.

In each table, columns 1 to 6 show the mean shift δ, the variance shift γ, the Weibull

scale parameters (λ1, λ2), and the upper bounds r1 and r2 on the Type I and II error

probabilities. Columns 7 to 10 show the optimal design parameters n∗, h∗, k∗1, and k∗2.

Columns 11 to 13 show the Type I error probability α, the Type II error probability β, and

the expected hourly loss-cost F .

The other cost parameter values are as follows. The expected search time D0 for one

false alarm is .1 hours. The expected search and process adjustment time D1, following the

occurrence of assignable causes 1 and/or 2, is .3 hours. The fixed and variable sampling costs

are a1= .5 and a2= .1. The expected cost a3 required to locate and eliminate assignable

causes 1 and/or 2 is 2. The expected search cost a4 for each false alarm is 1. The hourly

profit V when all items fall within the specification limits is 120. The Weibull shape

parameter θ is .5 for both assignable causes. Notice that since λ = λ1+λ2 = .1414, we have

chosen both the Weibull scale parameters λ1 and λ2 and the Weibull shape parameter so

that the mean time before the occurrence of an assignable cause is constant at 100 hours.

First, we consider the sensitivity of the optimal design parameters n∗, h∗, k∗1, and k2
∗

to changes in the mean shift δ. Regardless of the distribution shape, when δ increases,

the sample size n∗ decreases, the time h∗ between successive samples decreases, and the

X-chart factor k∗1 usually increases. These effects are the same as in Costa [13] and can be

explained as follows. When δ becomes large, it is easier to detect that the process mean is

out of control and hence, the sample size n∗ need not be large. Usually, a decrease in n∗

leads to a decrease in h∗. This is because the sampling cost for a smaller sample is lower,

and hence more frequent sampling is allowed. Furthermore, since a large δ results in a lower

Type II error probability β, the factor k∗1 increases, reducing the Type I error probability α
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while maintaining an allowable value of β. An increase in the mean shift δ has a differing

effect on the value of the R-chart factor k∗2, depending on the distribution shape. In the

normal case (Table 1), k∗2 decreases. In the bounded Johnson case (Table 2), k∗2 remains

nearly constant. In the lognormal and unbounded Johnson distributions (Tables 3 and 4),

k∗2 usually increases.

Second, we consider the sensitivity of the optimal design parameters n∗, h∗, k∗1, and k∗2

to changes in the variance shift γ. For the normal population (Table 1), an increase in γ

often results in lower values of n∗ and h∗ and higher values of k∗2. The reason is the same

as for changes in δ. For the other three populations (Tables 2 to 4), when r1 and r2 are

.1 or bigger, the effect of changing γ on n∗, h∗, and k∗2 is similar to that for the normal

population. However, when r1 = .0027 and r2 = .005, an increase in γ often results in

higher values of n∗. Chen and Cheng [34] show that in an economic-statistical design with

a small skewness, α and β with large values of k1 and k2 increase as the kurtosis increases.

Hence, when r1 and r2 are small and kurtosis is high, n∗ needs to be large; consequently n∗

increases with γ.

Next, we consider the effect of changes in the Weibull scale parameters (λ1, λ2) on the

values of the optimal design parameters. For each (δ, γ) pair, Tables 1 to 4 list three (λ1,

λ2) values: one in which λ1 < λ2 (.0141, .1273), one in which λ1 = λ2 (.0707, .0707), and

one in which λ1 > λ2 (.1273, .0141). (Recall that we have chosen λ1 and λ2 so that λ =

λ1 +λ2 = .1414, i.e., the mean time before the occurrence of an assignable cause is constant

at 100 hours.) In all four tables, as λ1 increases relative to λ2, n
∗ and k∗1 usually decrease

and k∗2 usually increases. These effects are the same as in Costa [13] and can be explained

as follows. As λ1 increases, the frequency of assignable cause 1 relative to assignable cause 2

increases, and hence k∗1 decreases and k∗2 increases. (Similarly, as λ2 increases, k∗2 decreases

and k∗1 increases.) Moreover, the effect on h∗ depends on δ; h∗ usually increases for δ = 1

and decreases for δ = 2.

Finally, we consider the effect of changing distribution shape on the values of the optimal

design parameters. The further (α3, α4) deviates from (0,3), the further n∗, h∗, k∗1, and k∗2

stray from the normal values listed in Table 1. Furthermore, the optimal parameters are

sensitive to kurtosis α4. Tables 2 and 3 (both with skewness α3 = 2) shows that when r1

and r2 are large (e.g., ≥ .1), n∗ and k∗1 decrease as α4 increases (while the values of h∗ and

k∗2 do not change monotonically). However, when r1 and r2 are small (e.g., r1 = .0027 and
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r2 = .005), an increase in α4 results in higher values of n∗. This agrees with earlier findings

by Chen and Cheng [34].

Tables 1 to 4 also illustrate the relative benefits of the fully economic and economic-

statistical designs. When r1 = r2 = 1, the economic-statistical design is called the fully

economic design because there are no limits on the Type I and Type II error probabilities. As

the upper bounds (r1 and r2) of α and β are relaxed, the mean hourly loss-cost decreases but

the corresponding α and β increase. The tables show that the economic-statistical design

should be used because the Type I and II error probabilities can be kept under .1 with only

a less than 10% increase in the mean hourly loss-cost. Even when the Type I and II error

probabilities are kept under .0027 and .005, respectively, the mean hourly loss-cost does

not increase significantly for the normal and Johnson bounded cases as shown in Tables 1

and 2. By comparison, the fully economic design has the lowest loss-cost but the Type II

error probability can be as high as .3. Therefore, the economic-statistical design is superior.

4 Conclusions

We consider the joint economic-statistical design of X and R control charts under the

assumption that the quality measurement has a Johnson distribution and the time until

the assignable cause occurs has a Weibull distribution. We choose the Johnson probability

model because we can fit it to any desired first four moments. The control-chart design pa-

rameters n, h, k1 and k2 are determined so that the expected hourly loss-cost is minimized

under constraints on the Type I and II error probabilities. We discuss the cost model and

computations of the expected hourly loss-cost. Sensitivity analysis is performed to investi-

gate the effects of shifts in mean and variance, Weibull scale parameter, and nonnormality

on the optimal design parameters n∗, h∗, k∗1 and k∗2. Five results follow: (i) When the

mean-shift parameter δ increases, it is easier to detect the shift. Hence, the sample size n∗

and the time h∗ between sampling decrease. Since the sample size is smaller, the sampling

cost is less, and hence, the X-chart factor k∗1 increases. (ii) When r1 and r2 are large (e.g.,

≥ .1), an increase in γ often results in lower values of n∗ and h∗ and higher values of k∗2,

regardless of distribution shape. The reason is the same as in (i). On the other hand, when

r1 and r2 are small (e.g., r1 = .0027 and r2 = .005) and the population kurtosis is high (e.g.,

> 3), n∗ increases with γ. (iii) When λ1 > λ2, assignable cause 1 occurs more frequently
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than assignable cause 2, and hence k∗1 decreases. (iv) The values of n∗, h∗, k∗1, and k∗2 are

affected by nonnormality, especially kurtosis. Therefore, nonnormality can not be ignored.

(v) The economic-statistical design is superior to the fully economic design because the

Type I and II error probabilities often can be reduced to acceptable levels at only a slight

increase in the loss-cost.

Appendix I: A List of Notations

The following notations are used in the paper:

n: sample size;

h: time (in hours) between successive samples;

k1: control factor for the X chart;

k2: control factor for the R chart;

X: sample mean;

R: sample range;

µ0: standard value for process mean;

σ0: standard value for process standard deviation;

µ: process mean, equal to µ0 when the process is in control;

σ: process standard deviation, equal to σ0 when the process is in control;

α3: process skewness;

α4: process kurtosis;

δ: shift in the process mean (in unit of σ0);

γ: shift in the process standard deviation (in unit of σ0);

Ti: Elapsed time before assignable cause i occurs, i = 1, 2;

Tmin: minimum of T1 and T2;

θ: Weibull shape parameter;

λi: Weibull scale parameter for the random variable Ti, i = 1, 2;

λ: occurrence rate of the assignable cause, i.e., λ = λ1 + λ2;

s: number of samples taken during the in-control state;

a1: fixed cost of sampling;

a2: variable cost of sampling;

a3: expected cost required to locate and eliminate assignable causes 1 and/or 2;

a4: expected search cost for each false alarm;

D0: expected search time for a false alarm;
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D1: expected search and process adjustment time resulting from the occurrence of assignable

causes 1, 2, or both;

C: expected net profit of an entire production cycle;

T : length of a production cycle, which starts with an in-control state, goes through the

out-of-control state, and ends when the assignable causes are removed;

U : time in which only the mean is out of control in the production cycle;

τi: expected time between the occurrence of the ith assignable cause and its last sampling

time, i = 1, 2;

α: joint Type I error probability for the X and R charts;

p1: joint power of the X and R charts when only the process mean shifts;

p2: joint power of the X and R charts when only the process variance shifts;

p3: joint power of the X and R charts when both the process mean and variance shift;

β: joint Type II error probability for the X and R charts;

r1: upper bound for α in the economic-statistical design;

r2: upper bound for β in the economic-statistical design;

TX : expected time in which only the process mean is out of control;

TR: expected time in which only the process variance is out of control;

TXR: expected time in which both the process mean and variance are out of control;

V : profit per hour while all items fall within the specification limits;

V0: profit per hour while the process is in control;

V1: profit per hour while only the process mean is out of control;

V2: profit per hour while only the process variance is out of control;

V3: profit per hour while both the process mean and variance are out of control;

n∗, h∗, k∗1, k
∗

2: optimal value of the design parameters n, h, k1, and k2;

β1: square of the population skewness, β1 = α2
3;

β2: population kurtosis, β2 = α4.

Appendix II: The Johnson Probability Model

The Johnson distribution family, proposed by Johnson [31], includes three transforma-

tions of the standard normal distribution. Let Y and Z denote the Johnson and standard

normal random variables, respectively. The three transformations are:
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SL : Z = ω + ψ ln(
Y − ξ

η
), η( Y − ξ) ≥ 0,

SB : Z = ω + ψ ln(
Y − ξ

ξ + η − Y
), 0 ≤ Y − ξ ≤ η, (10)

SU : Z = ω + ψ sinh−1(
Y − ξ

η
), −∞ < Y <∞.

The constants ξ and η are location and scale parameters, respectively; ω and ψ are the

shape parameters. The second transformation, SB, provides a bounded random variable

Y ; the third transformation, SU , results in an unbounded Y . For lognormal distributions,

SL, the range is bounded below if η > 0 and bounded above if η < 0. Furthermore,

the normal distribution, denoted as SN , is one of the types of the Johnson distribution

besides SU , SB, and SL. We can use the numerical routines of Hill et al. [35] to find the

Johnson distribution having the four desired moments mean, standard deviation, skewness,

and kurtosis. To compute the Johnson cumulative probability F (y) = P{Y ≤ y}, we can

transform y to z using Equation (10) and then let F (y) = Φ(z). For example, if Y is a

lognormal distribution, F (y) = Φ[ω + ψ ln((y − ξ)/η)].
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Table 1: The optimal design values n∗, h∗, k∗1, and k∗2 for the normal population (skewness

α3 = 0 and kurtosis α4 = 3)

δ γ λ1 λ2 r1 r2 n∗ k∗

1 k∗

2 h∗ α β F

1 1.5 .0141 .1273 1 1 13 2.7 4.5 4.0 .0806 .0959 1.7581
(λ1 = .1λ) .1 .1 13 2.7 4.5 4.0 .0806 .0959 1.7581

.0027 .005 52 3.3 6.8 4.7 .0026 .0024 2.8316

.0707 .0707 1 1 13 2.5 4.7 4.4 .0602 .0969 1.5125
(λ1 = λ2) .1 .1 13 2.5 4.7 4.4 .0602 .0969 1.5125

.0027 .005 52 3.3 6.8 5.9 .0026 .0024 2.3023

.1273 .0141 1 1 14 2.4 5.2 6.1 .0329 .1034 1.1179
(λ1 = .9λ) .1 .1 14 2.3 5.2 6.3 .0379 .0938 1.1187

.0027 .005 50 3.2 6.9 8.6 .0024 .0029 1.5384

1 2 .0141 .1273 1 1 11 3.0 5.0 1.9 .0204 .0876 2.3443
.1 .1 11 3.0 5.0 1.9 .0204 .0876 2.3443

.0027 .005 40 3.2 6.8 3.1 .0023 .0046 3.1789

.0707 .0707 1 1 11 2.8 5.0 2.4 .0228 .0797 1.9212
.1 .1 11 2.8 5.0 2.4 .0228 .0797 1.9212

.0027 .005 40 3.2 6.8 4.1 .0023 .0046 2.5571

.1273 .0141 1 1 11 2.5 5.2 4.2 .0230 .0825 1.2507
.1 .1 11 2.5 5.2 4.2 .0230 .0825 1.2507

.0027 .005 40 3.1 6.9 6.5 .0026 .0049 1.5934

2 1.5 .0141 .1273 1 1 9 2.7 4.4 2.8 .0552 .0071 1.8699
.1 .1 9 2.7 4.4 2.8 .0552 .0071 1.8699

.0027 .005 23 3.3 6.3 2.3 .0026 < 10−5 2.7176

.0707 .0707 1 1 6 2.7 4.4 1.9 .0297 .0499 1.9028
.1 .1 6 2.7 4.4 1.9 .0297 .0499 1.9028

.0027 .005 22 3.2 6.4 2.4 .0025 .00002 2.6430

.1273 .0141 1 1 5 2.7 4.9 1.6 .0117 .1019 1.7484
.1 .1 5 2.7 4.7 1.7 .0148 .0981 1.7539

.0027 .005 17 3.1 6.4 2.4 .0026 .0002 2.2503

2 2 .0141 .1273 1 1 8 3.0 4.7 1.6 .0227 .0265 2.3758
.1 .1 8 3.0 4.7 1.6 .0227 .0265 2.3758

.0027 .005 22 3.3 6.3 2.2 .0025 .0002 2.8420

.0707 .0707 1 1 7 3.0 4.8 1.5 .0149 .0481 2.1593
.1 .1 7 3.0 4.8 1.5 .0149 .0481 2.1593

.0027 .005 15 3.1 6.3 1.8 .0026 .0039 2.5536

.1273 .0141 1 1 5 2.8 5.0 1.5 .0088 .1224 1.8006
.1 .1 6 2.9 5.1 1.6 .0079 .0851 1.8096

.0027 .005 15 3.2 6.3 2.2 .0021 .0044 2.1673
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Table 2: The optimal design values n∗, h∗, k∗1, and k∗2 for population skewness α3 = 2 and
kurtosis α4 = 6

δ γ λ1 λ2 r1 r2 n∗ k∗

1 k∗

2 h∗ α β F

1 1.5 .0141 .1273 1 1 18 2.6 4.1 2.1 .0071 .1349 2.5889
.1 .1 19 2.7 4.1 2.3 .0131 .0966 2.5894

.0027 .005 42 3.2 4.08 3.5 .0026 .0046 2.9674

.0707 .0707 1 1 15 2.3 4.1 2.2 .0200 .1350 2.3787
.1 .1 17 2.3 4.1 2.4 .0199 .0958 2.3896

.0027 .005 42 3.2 4.08 3.6 .0026 .0046 2.8798

.1273 .0141 1 1 12 2.0 4.1 2.3 .0365 .1990 2.1325
.1 .1 16 2.1 4.1 2.7 .0303 .0886 2.1653

.0027 .005 42 3.2 4.11 3.8 .0021 .0047 2.7661

1 2 .0141 .1273 1 1 12 2.7 4.1 1.7 .0178 .2147 2.5901
.1 .1 18 2.7 4.1 2.2 .0161 .0986 2.6187

.0027 .005 44 3.3 4.1 3.2 .0016 .0049 3.4417

.0707 .0707 1 1 12 2.3 4.1 2.0 .0254 .2044 2.3797
.1 .1 18 2.4 4.1 2.3 .0161 .0986 2.4604

.0027 .005 44 3.3 4.1 3.4 .0016 .0049 3.1827

.1273 .0141 1 1 12 2.1 4.1 2.3 .0304 .1983 2.1436
.1 .1 19 2.4 4.1 2.7 .0130 .0981 2.2182

.0027 .005 44 3.3 4.1 3.8 .0016 .0049 2.8710

2 1.5 .0141 .1273 1 1 13 3.0 4.1 1.6 .0000 .0304 2.6017
.1 .1 13 3.0 4.1 1.6 .0000 .0304 2.6017

.0027 .005 16 3.3 4.1 1.8 .0025 < 10−5 2.6490

.0707 .0707 1 1 8 2.6 4.1 1.3 .0008 .1377 2.4340
.1 .1 11 2.7 4.1 2.4 .0199 .0958 2.4387

.0027 .005 11 3.4 4.1 1.6 .0024 < 10−5 2.5202

.1273 .0141 1 1 6 2.4 4.1 1.3 .0034 .1774 2.1525
.1 .1 8 2.6 4.1 1.4 .0012 .0946 2.1836

.0027 .005 9 3.5 4.1 1.6 .0022 .0047 2.2344

2 2 .0141 .1273 1 1 12 2.9 4.1 1.6 .0068 .0145 2.6415
.1 .1 12 2.9 4.1 1.6 .0068 .0145 2.6415

.0027 .005 14 3.3 4.1 1.6 .0026 .0003 2.6714

.0707 .0707 1 1 8 2.7 4.1 1.4 .0126 .0205 2.4450
.1 .1 8 2.7 4.1 1.4 .0126 .0205 2.4450

.0027 .005 13 3.4 4.1 1.6 .0022 .0035 2.5603

.1273 .0141 1 1 5 2.5 4.1 1.3 .0067 .2856 2.1912
.1 .1 8 3.3 4.1 1.4 .0044 .0980 2.2126

.0027 .005 13 3.4 4.1 1.8 .0022 .0035 2.4322
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Table 3: The optimal design values n∗, h∗, k∗1, and k∗2 for population skewness α3 = 2 and
kurtosis α4 = 10.8634

δ γ λ1 λ2 r1 r2 n∗ k∗

1 k∗

2 h∗ α β F

1 1.5 .0141 .1273 1 1 9 1.8 3.6 4.0 .2334 .1656 2.1680
.1 .1 16 2.2 5.3 3.7 .0973 .0983 2.4035

.0027 .005 46 3.2 14.9 1.4 .0026 .0039 8.8976

.0707 .0707 1 1 9 1.7 4.2 4.0 .1593 .1817 1.9653
.1 .1 16 2.2 5.3 3.8 .0973 .0983 2.0502

.0027 .005 46 3.2 15.0 2.1 .0026 .0039 6.5387

.1273 .0141 1 1 9 1.7 5.3 4.5 .0815 .2140 1.5195
.1 .1 15 2.0 5.5 3.8 .0661 .0907 1.5903

.0027 .005 46 3.2 15.0 4.1 .0026 .0039 3.0764

1 2 .0141 .1273 1 1 9 2.0 4.1 2.7 .1432 .2006 2.3616
.1 .1 14 2.2 4.4 2.5 .0776 .0988 2.3854

.0027 .005 63 3.2 14.9 1.9 .0026 .0047 8.1935

.0707 .0707 1 1 9 2.0 4.8 3.0 .0904 .2586 2.1540
.1 .1 15 2.2 4.9 1.8 .0685 .0956 2.1683

.0027 .005 63 3.2 14.9 2.4 .0026 .0047 6.1660

.1273 .0141 1 1 9 1.9 5.6 3.8 .0735 .2812 1.5473
.1 .1 15 2.1 6.2 3.5 .0618 .0937 1.6778

.0027 .005 63 3.2 14.9 5.2 .0026 .0047 3.1766

2 1.5 .0141 .1273 1 1 6 1.9 3.7 3.0 .1623 .0022 2.2670
.1 .1 12 2.0 3.9 3.7 .0986 .0103 2.2965

.0027 .005 40 3.2 16 1.3 .0026 < 10−5 8.7621

.0707 .0707 1 1 4 1.8 4.2 2.0 .0838 .0318 2.2040
.1 .1 4 1.8 4.2 2.0 .0838 .0318 2.2040

.0027 .005 40 3.2 16 1.7 .0026 < 10−5 6.6093

.1273 .0141 1 1 4 1.8 5.4 1.8 .0775 .0546 1.8368
.1 .1 4 1.8 5.4 1.8 .0775 .0546 1.8368

.0027 .005 40 3.2 16 2.9 .0026 < 10−5 3.7800

2 2 .0141 .1273 1 1 6 2.3 4.4 2.1 .0968 .0419 2.4554
.1 .1 6 2.3 4.4 2.1 .0968 .0419 2.4554

.0027 .005 46 3.2 15 1.5 .0026 < 10−5 7.6477

.0707 .0707 1 1 4 2.0 4.8 1.7 .0640 .1391 2.2494
.1 .1 6 2.2 5.3 1.8 .0597 .0587 2.2691

.0027 .005 46 3.2 15 1.9 .0026 < 10−5 5.9888

.1273 .0141 1 1 4 2.0 5.7 1.7 .0327 .1936 1.8524
.1 .1 6 2.1 6.0 1.8 .0268 .0907 1.9060

.0027 .005 42 3.3 15 3.1 .0023 < 10−5 3.0538
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Table 4: The optimal design values n∗, h∗, k∗1, and k∗2 for population skewness α3 = 5 and
kurtosis α4 = 100

δ γ λ1 λ2 r1 r2 n∗ k∗

1 k∗

2 h∗ α β F

1 1.5 .0141 .1273 1 1 8 1.3 3.0 4.3 .2887 .0073 2.0557
.1 .1 12 1.7 5.7 2.8 .0979 .0843 2.4011

.0027 .005 54 3.7 32.7 1.6 .0026 .0017 10.6137
.0707 .0707 1 1 6 1.3 3.3 4.5 .1945 .1596 1.7990

.1 .1 11 1.7 5.7 3.5 .0991 .0914 1.9477
.0027 .005 54 3.7 33.1 2.2 .0026 .0017 7.6036

.1273 .0141 1 1 6 1.3 4.9 4.9 .1099 .1832 1.3263
.1 .1 11 1.8 5.9 5.3 .0948 .0914 1.3555

.0027 .005 54 3.7 33.1 6.1 .0026 .0017 3.1941

1 2 .0141 .1273 1 1 6 1.6 3.2 3.0 .1628 .2478 2.3901
.1 .1 12 2.2 5.8 2.6 .0669 .0965 2.4563

.0027 .005 66 3.7 29.9 1.4 .0026 .0046 10.8369
.0707 .0707 1 1 6 1.5 3.6 3.2 .1453 .2553 2.0125

.1 .1 11 1.6 6.0 2.8 .0568 .0975 2.1952
.0027 .005 66 3.7 30.1 2.1 .0026 .0046 7.9489

.1273 .0141 1 1 6 1.5 5.1 4.3 .0846 .2988 1.3511
.1 .1 11 1.7 6.2 4.4 .0472 .0983 1.4216

.0027 .005 66 3.7 30.1 5.0 .0026 .0046 3.6089

2 1.5 .0141 .1273 1 1 6 1.3 3.1 3.6 .193 .0002 2.1500
.1 .1 5 1.6 3.7 2.4 .099 .0030 2.2900

.0027 .005 30 4.1 23.1 0.9 .0026 < 10−5 9.4283
.0707 .0707 1 1 4 1.5 3.5 2.5 .1087 .0054 2.0425

.1 .1 4 1.6 3.6 2.4 .0964 .0074 2.0486
.0027 .005 30 4.1 23.1 1.3 .0026 < 10−5 6.8681

.1273 .0141 1 1 4 1.4 5.1 2.2 .0405 .0423 1.6472
.1 .1 4 1.4 5.1 2.2 .0405 .0423 1.6472

.0027 .005 30 4.1 23.1 2.7 .0026 < 10−5 3.3390

2 2 .0141 .1273 1 1 6 2.2 3.4 2.8 .1320 .0171 2.4357
.1 .1 6 2.4 3.8 2.0 .0999 .0299 2.4899

.0027 .005 37 3.9 27.1 0.9 .0026 < 10−5 9.7044
.0707 .0707 1 1 4 1.6 3.5 2.2 .0998 .0372 2.1951

.1 .1 4 1.6 3.5 2.2 .0998 .0372 2.1951
.0027 .005 37 3.9 27.1 1.3 .0026 < 10−5 7.2223

.1273 .0141 1 1 4 1.5 5.2 2.0 .0843 .0323 1.6938
.1 .1 4 1.5 5.2 2.0 .0843 .0323 1.6938

.0027 .005 37 3.9 27.1 2.5 .0026 < 10−5 3.6897
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