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Abstract

Though both symmetric and asymmetric control limits can be applied to X̄ and R

charts, no well-controlled comparison of the resulting performance has been conducted.

Symmetric limits such as 3-sigma limits are the customary choice. However, previous

researchers have proposed asymmetric control limits as a more appropriate choice than

symmetric limits for skewed distributions. This paper examines the relative performance

of symmetric and asymmetric limits. It compares the out-of-control ARL (average run

length) for symmetric and asymmetric limits for fixed values of the in-control ARL. Two

testing examples are employed: the exponential and Johnson unbounded distributions.

The results of the performance comparison are mixed. For both X̄ and R charts, the

impact of the control limit choice (symmetric or asymmetric) depends on two factors:

the skewness of the charting statistic (sample mean X̄ for the X̄ chart and sample

range R for the R chart) and the shift direction. When the charting statistic has a

right skewed distribution, symmetric limits perform better if the monitored process

property (the mean for the X̄ chart and the standard deviation for the R chart) shifts

upward, but worse when it shifts downward. When the charting statistic has a left

skewed distribution, the outcome is reversed. Although neither type of control limits

dominates even for a skewed population, the asymmetric limits are more robust to the

shift in the process mean or variation. The effect of the sample size is also discussed.

1



Keywords: Asymmetric control limits, average run length, shift, skewed distribution,

SPC

1 Introduction

In this paper, we compare the impact of control limit settings (symmetric versus asym-

metric) on the performance of Shewhart control charts. Both X̄ and R charts are used in

statistical process control (SPC) to monitor the process mean and variance. A conventional

choice for both charts is the symmetric control limits µY ± kσY , where µY and σY are the

mean and variance of the charting statistic Y (the sample mean for the X̄ chart and sample

range for the R chart) and k is a positive constant, typically k = 3 (Montgomery, 2005).

Various methods of computing asymmetric control limits for skewed distributions have

been proposed.1 The probability-symmetric approach sets the lower control limit (LCL)

and upper control limit (UCL) so that the charting statistic Y is equally likely to fall above

the UCL or below the LCL when the process is in-control. That is, when the process is in

control, P{Y ≤ LCL} = P{Y ≥ UCL} = α/2, where α is the desired Type-I risk.2 The

probability-symmetric control limits are symmetric at µY only if the distribution of Y is

symmetric.

If the distribution function of the quality measurement X is unknown, the values of

the probability-symmetric control limits must be approximated. A number of methods are

available. The weighted variance (WV) method was developed by Choobineh and Ballard

(1987) based on semivariance approximation (Choobineh and Branting, 1986). Heuristic

variants of the WV method that requires no assumptions concerning the functional form of

the distribution were later proposed by, e.g., Bai and Choi (1995), Castagliola (2000), and

Castagliola and Tsung (2005). The skewness correction (SC) method (Chan and Cui, 2003)

works for skewed distributions. Another approach is to fit a theoretical frequency curve,

such as a member of the Pearson system, and obtain probability-symmetric control limits

meeting the specified Type-I risk α value.

Some SPC approaches have been developed specifically for skewed distributions. The

1An alternative is to transform nonnormal into normal quality measurements and use conventional She-
whart chart limits.

2Recall that Type-I risk denotes the probability that Y falls outside the control limits when the process
is actually in control.
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split distribution method of Cowden (1957) works for arbitrary skewed distributions. Other

methods are distribution specific, including geometric midrange and range charts for moni-

toring the mean and variance of lognormal distributions (Ferrell, 1958) and median, range,

scale, and location charts for Weibull distributions (Nelson, 1979).

Although the construction of asymmetric control limits for skewed distributions has

been addressed in the literature, little is known about how the adoption of asymmetric

control limits affects X̄ and R chart performance. In particular, the performance impact of

limit choice (symmetric or asymmetric) must be characterized in detail using a consistent

benchmark. In this work, we compare the performance impact of symmetric and asymmetric

limits (probability-symmetric control limits) for a quality measurement X with a known

distribution. Our performance benchmark is the average run length (ARL) when the process

goes out of control (called out-of-control ARL). Throughout the comparison, the in-control

ARL remains fixed, where the in-control ARL is the ARL when the process is in control.

That is, the values of the symmetric and asymmetric control limits are chosen to meet a

specified value of the in-control ARL (or equivalently the Type-I risk).

The rest of this paper is organized as follows. Section 2 introduces the symmetric and

asymmetric control limits for X̄ and R charts. Section 3 presents example computation of

the symmetric and asymmetric limits given quality measurements from two different distri-

butions: the exponential and Johnson unbounded distributions (Johnson, 1949). Section 4

compares the performance outcome of symmetric and asymmetric limits with X̄ and R

charts. The ARL value for the exponential population is computed numerically while the

ARL for the Johnson population is estimated via simulation experiments. Our results show

that the performance impact of the control limits depends on two factors: the skewness of

the charting statistic (right versus left) and the shift direction. We find that even when the

distribution of the quality characteristic is skewed, symmetric limits sometimes outperform

asymmetric limits. Section 5 concludes.

2 Symmetric and Asymmetric Control Limits

Consider a process that produces sequential outputs. Suppose that each output has a

measurable quality characteristic. Let X̄ and R denote the average and range of the random

sample {X1, X2,· · ·, Xn}, where X1, X2,· · · are successive independent observations of
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the quality characteristic measurement X . Let µ0 and σ0 denote the mean and standard

deviation of X when the process remains in control. To make the comparisons of symmetric

and asymmetric control limits simple, we assume that when the process goes out of control,

the process mean shifts from µ0 to µ0 + δσ0 (where δ is a real number) and the process

standard deviation shifts from σ0 to γσ0 (γ > 0), but the higher moments remain unchanged.

Such assumption is common in literature, e.g., Castagliola (2000) and Chan and Cui (2003),

although it may not be valid in practice. Consider the situation that the distribution

shape changes but the process mean and standard deviation remain unchanged when the

process goes out of control. The charting statistics X̄ and R may fall outside control limits

and false alarms occur because the process mean and standard deviation are unchanged.

Consequently, comparisons of symmetric and asymmetric limits become complicate.

Shewhart X̄ and R charts can detect a shift in the process mean and variance. Both

charts contain a center line (CL), UCL, and LCL. Random samples of size n are collected

and their sample averages and ranges are plotted in the X̄ and R charts. As soon as a point

falls outside the control limits, an out-of-control-action plan can be activated to identify

and eliminate assignable causes.

If conventional symmetric control limits are used, the CL, UCL, and LCL of the X̄ chart

are

X̄-chart symmetric limits:





UCLX̄ = µ0 + kX̄
σ0√

n
,

CLX̄ = µ0,

LCLX̄ = µ0 − kX̄
σ0√

n
,

(1)

and the CL, UCL, and LCL of the R chart are

R-chart symmetric limits:





UCLR = µR + kR σR,

CLR = µR,

LCLR = max{0, µR − kR σR},

(2)

where µR and σR denote the mean and standard deviation of the range R. The values of

the positive constants kX̄ and kR can be chosen to meet the desired value of the in-control

ARL, denoted ARL0, or equivalently the Type-I risk α (= 1/ARL0).

If asymmetric control limits are used, then when the process is in control the charting

statistic (X̄ or R) is equally likely to fall below the LCL or above the UCL. Furthermore, if
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the control limits are chosen to meet the desired ARL0 value, the corresponding CL, UCL,

and LCL of the X̄ chart are

X̄-chart asymmetric limits:





UCLX̄ = F−1
X̄

(1− α
2 ),

CLX̄ = µ0,

LCLX̄ = F−1
X̄

(α
2 ),

(3)

and the CL, UCL, and LCL of the R chart are

R-chart asymmetric limits:





UCLR = F−1
R (1 − α

2 ),

CLR = µR,

LCLR = F−1
R (α

2 ),

(4)

where the Type-I risk α = 1/ARL0 and FX̄ and FR are the cumulative distribution functions

(CDFs) of X̄ and R, respectively. When X is symmetrically distributed, the X̄-chart

symmetric and asymmetric control limits are identical. If the distribution of X is skewed

but the sample size n is large, then the central limit theorem dictates that the sample mean

X̄ is nearly normally distributed, and hence the symmetric and asymmetric control limits

are close. However, the R-chart symmetric and asymmetric control limits are different

unless R is symmetrically distributed, which could happen when the quality characteristic

X has a bounded distribution.

3 Two Testing Examples

In this section, we illustrate the computation of symmetric and asymmetric control lim-

its for X̄ and R charts. The control limits are calculated under two assumptions: that the

quality measurement follows the exponential and Johnson unbounded distributions, and the

control limits are set to achieve a desired in-control ARL of ARL0. The same assumptions

will hold for our empirical comparisons in Section 4. We describe the computation in two

testing examples below.

(a) Exponential distributions

Suppose that when the process is in control, the quality characteristic X follows an ex-

ponential distribution with lower bound 0 and mean µ0 = λ (=σ0), denoted exponential(λ).
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In this special case, the X̄ and R chart symmetric and asymmetric control limits can be

computed numerically. We describe the computations below.

X̄ charts:

If {X1, · · · , Xn} is an independent sample from the exponential(λ) population,
∑n

i=1 Xi

follows a gamma distribution with shape parameter n and scale parameter λ (i.e., the mean

= nλ), denoted gamma(n, λ). The symmetric control limits for the X̄ chart are therefore

µ0 ± kX̄σ0/
√

n with kX̄ satisfying the equation

P{ X̄ 6∈ µ0 ± kX̄σ0/
√

n | E(X) = µ0, V(X) = σ2
0}

= P{
n∑

i=1

Xi 6∈ nµ0 ±
√

nkX̄σ0 | E(X) = µ0, V(X) = σ2
0}

= 1 + G(nµ0 −
√

nkX̄σ0) − G(nµ0 +
√

nkX̄σ0)

= 1 + G(nλ − kX̄

√
nλ)− G(nλ + kX̄

√
nλ) = α, (5)

where the Type-I risk α = 1/ARL0 and G(·) is the gamma(n, λ) CDF. (Recall that µ0 =

σ0 = λ for the exponential distribution.) Since the Type-I risk is functionally independent

of the scale parameter λ, Equation (5) can be rewritten as

1 + G̃(n − kX̄

√
n) − G̃(n + kX̄

√
n) = α, (6)

where G̃(·) is the gamma(n, 1) CDF. We can solve Equation (6) for kX̄ using a numerical

root-finding method such as the bisection search.

Similarly, the asymmetric control limits for the X̄ chart in Equation (3) can be computed

numerically for the exponential population. The upper and lower control limits are

X̄-chart asymmetric limits:





UCLX̄ = F−1
X̄

(
1 − α

2

)
= n−1G−1

(
1− α

2

)
,

LCLX̄ = F−1
X̄

(
α
2

)
= n−1G−1

(
α
2

)
,

where G−1(·) denote the inverse of G(·). Both the symmetric and asymmetric limits have

the same in-control ARL of ARL0 = 1/α.

R charts:

R-chart computation of the symmetric and asymmetric control limits is similar to X̄-
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chart computation. Again, let {X1, · · · , Xn} be an independent sample from the exponential(λ)

population. Then the CDF of the range R is

FR(r) = n

∫ ∞

0

1

λ
e−

x
λ

[
(1 − e−

x+r
λ ) − (1 − e−

x
λ )

]n−1
dx

=
n

λ

∫ ∞

0
e−

x
λ

[
e−

x
λ − e−

x+r
λ

]n−1
dx

=
n

λ

∫ ∞

0
e−

x
λ

n−1∑

i=0

Cn−1
i (e−

x
λ )i(−e−

x+r
λ )n−1−idx

=
n

λ

n−1∑

i=0

Cn−1
i

∫ ∞

0
e−

x
λ (e−

x
λ )i(−e−

x+r
λ )n−1−idx

=
n−1∑

i=0

Cn−1
i (−e−

r
λ )

(n−1−i)
∫ ∞

0

n

λ
e−

nx
λ dx

=
n−1∑

i=0

Cn−1
i (−e−

r
λ )

(n−1−i)
=

[
1 − e−r/λ

]n−1
, 0 ≤ r ≤ ∞. (7)

Hence, the probability density function (PDF) of R is

fR(r) =
∂FR(r)

∂ r
=

n − 1

λ
e−r/λ

[
1− e−r/λ

]n−2
, 0 ≤ r ≤ ∞.

Since the CDF and PDF have closed forms, the mean and variance can be computed ana-

lytically. The mean of R is

µR =

∫ ∞

0
r
n − 1

λ
e−r/λ

[
1 − e−r/λ

]n−2
dr =

n − 1

λ

∫ ∞

0
re−r/λ

[
1− e−r/λ

]n−2
dr

=
(n − 1)

λ

∫ ∞

0
re−r/λ

n−2∑

i=0

Cn−2
i (−e−r/λ)

n−2−i
dr

=
(n − 1)

λ

n−2∑

i=0

Cn−2
i (−1)n−2−i

∫ ∞

0
r(e−r/λ)n−1−i dr

=
(n − 1)

λ

n−2∑

i=0

Cn−2
i (−1)n−2−i

(
λ

n − 1− i

)2

= (n − 1)λ
n−2∑

i=0

Cn−2
i (−1)i(i + 1)−2 .

The variance is σ2
R = Var(R) = E(R2) − µ2

R, where

E(R2) =

∫ ∞

0
r2n − 1

λ
e−r/λ

[
1 − e−r/λ

]n−2
dr =

n − 1

λ

∫ ∞

0
r2e−r/λ

[
1 − e−r/λ

]n−2
dr

=
(n − 1)

λ

∫ ∞

0
r2e−r/λ

n−2∑

i=0

Cn−2
i (−e−r/λ)

n−2−i
dr
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=
(n − 1)

λ

n−2∑

i=0

Cn−2
i (−1)n−2−i

∫ ∞

0
r2(e−r/λ)n−1−i dr

=
(n − 1)

λ

n−2∑

i=0

Cn−2
i (−1)n−2−i 2

(
λ

n − 1 − i

)3

= 2(n − 1)λ2
n−2∑

i=0

Cn−2
i (−1)i(1 + i)−3 .

The R-chart symmetric control limits are then µR ± kRσR, where the positive constant

kR satisfies

P{ R 6∈ µR ± kRσR | V(X) = σ2
0}

= 1 + FR(µR − kRσR)− FR(µR + kRσR) = α, (8)

i.e., the Type-I risk is equal to α and hence, ARL0 = 1/α. Notice that the Type-I risk, and

therefore Equation (8), are functionally independent of λ. To compute the value of kR, we

use a numerical root-finding method such as the bisection search and set λ = 1 arbitrarily.

Similarly, the asymmetric control limits in Equation (4) for the R chart can be computed

analytically using Equation (7) for the exponential distribution. From Equation (7), we

obtain the inverse function of FR as F−1
R (p) = −λ ln(1 − p1/(n−1)), 0 ≤ p ≤ 1. Therefore,

the upper and lower control limits are

R-chart asymmetric limits:





UCLR = F−1
R

(
1 − α

2

)
= −λ ln

[
1 −

(
1 − α

2

)1/(n−1)
]
,

LCLR = F−1
R

(
α
2

)
= −λ ln

[
1 − (

α
2

)1/(n−1)
]

.

(9)

(b) Johnson unbounded distributions

The Johnson unbounded distribution (Johnson, 1949) is a transformation of the stan-

dard normal distribution. The Johnson and standard normal random variables, which we

denote X and Z, are related by the equation X = ξ + ν sinh((Z − η1)/η2), −∞ < X < ∞,

where ξ and ν are location and scale parameters, and η1 and η2 are the shape parameters.

If {X1, · · · , Xn} is an independent sample from the Johnson unbounded distribution, then

there are no closed form expressions for the distribution functions of the sample mean X̄

and sample range R. Therefore, the symmetric and asymmetric control-limits for a specified
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Type-I risk α can not be computed analytically. Instead, we apply the simulation approach

below, which enables us to derive symmetric and asymmetric X̄ and R chart control limits

for arbitrary specifications of the ARL0 value.

X̄ charts:

The symmetric control limits for the X̄ chart are µ0 ± kX̄σ0/
√

n, where kX̄ satisfies

the equation P{X̄ 6∈ µ0 ± kX̄σ0/
√

n|E(X) = µ0, V(X) = σ2
0} = α, where α = 1/ARL0.

Though the value of kX̄ is difficult to compute either analytically or numerically for the

Johnson unbounded population, it can be estimated through simulation experiments. This

is a stochastic root-finding problem, which we solve via the retrospective approximation

algorithm by Chen and Schmeiser (2001). Numerical results are given in Section 4.

Since the asymmetric limits for the X̄ chart in Equation (3) represent the [100(α/2)]th

and [100(1− α/2)]th quantiles, we compute them using the quantile estimation algorithm.

For any value p in (0, 1), the 100pth quantile F−1
X̄

(p) can be estimated using b replications

as follows:

1. For i = 1, 2, · · · , b:
Independently generate a sample {xi1, · · · , xin} from the Johnson unbounded distrib-

ution and compute the sample mean x̄i =
∑n

j=1 xij/n.

2. Rank the x̄i’s from least to greatest, generating the increasing sequence x̄(1) ≤ x̄(2) ≤
· · · ≤ x̄(b).

3. Compute the sample quantile F̂−1
X̄

(p) = (1−a)x̄(r)+ax̄(r+1), where r = bbpc, a = bp−r,

and b·c the “floor” operator, so that bbpc is the largest integer that is no greater than

bp.

Generating observations of the Johnson unbounded distribution is easy. We first generate a

standard-normal random variate z and then transform it into a Johnson unbounded random

variate x by using the formula x = ξ + νsinh((z − η1)/η2).

R charts:

Computing the symmetric control limits µR±kRσR for the R chart is more complicated

than for the X̄ chart because µR and σR need to be estimated through simulation. Given

µR and σR, we use the retrospective approximation algorithm to compute a value of kR
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satisfying the equation P{R 6∈ µR±kRσR|V(X) = σ2
0} = α, where µR and σR are computed

via simulation procedure as follows.

1. Independently generate h samples from the Johnson unbounded population, each of

size n, and find the range for each of the h samples. Repeat this process t times,

obtaining ht range observations rij, i = 1, · · · , t, j = 1, · · · , h.

2. At replication i, calculate the sample average r̄i =
∑h

j=1 rij/h and sample standard

deviation si = [
∑h

j=1(rij − r̄i)
2/(h− 1)]1/2, i = 1, · · · , t.

3. The R-chart mean and standard deviation are then approximated by µ̂R = ¯̄r =
∑t

i=1 r̄i/t and σ̂R = [
∑t

i=1

∑h
j=1(rij − ¯̄r)2/(ht − 1)]1/2. The corresponding stan-

dard errors are estimated by se(µ̂R) = [
∑t

i=1(r̄i − ¯̄r)2/(t(t − 1))]1/2 and se(σ̂R) =

[
∑t

i=1(si − σ̂R)2/(t(t − 1))]1/2.

Table 1 gives estimates µ̂R, σ̂R, and the corresponding standard-error estimates (given

in parentheses) for the Johnson unbounded distributions with µ0 = 0, σ0 = 1, skewness

and kurtosis (α3, α4) = (2, 11), (2,70), (5, 70), and sample size n = 2, 5.3 These estimated

values of µR and σR are used in our empirical comparisons in Section 4.

The R-chart asymmetric control limits are computed in a manner similar to the X̄

chart asymmetric control limits. The LCL and UCL are taken to be the [100(α/2)]th and

[100(1−α/2)]th quantiles of the random range R, and hence can be computed using quantile

estimation. R-chart quantile estimation is identical to X̄-chart quantile estimation, except

that for each sample, the sample range is computed rather than the sample mean.

To apply the control limit formulae in Section 3, the user must specify the ARL0 value.

To ensure a consistent benchmark, in our performance comparisons in Section 4 below we

will maintain the X̄-chart and R-chart ARL0 at a uniform level.

4 EMPIRICAL COMPARISONS

In this section, we examine how control limit choice (symmetric or asymmetric) affects

X̄ and R chart performance. The performance measure (the out-of-control ARL, denoted

ARL1) is computed for a fixed value of ARL0 (the in-control ARL). In each comparison,

3Note that α3 = E[(X−µ0

σ0

)3] and α4 = E[(X−µ0

σ0

)4].
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for the given chart type (X̄ and R chart), both symmetric and asymmetric control limits

are computed for the specified ARL0 value using the methods described in Section 3. Then

the corresponding ARL1 values are calculated for a given value of the mean shift (for the

X̄ chart) or standard-deviation shift (for the R chart). In our comparisons, a lower value

of ARL1 signifies better performance.

Two simulation experiments are conducted to assess the performance impact of control

limit choice (symmetric or asymmetric limits), the first for X̄ charts and the second for R

charts. In the first experiment, we assume that the process mean shifts from µ0 to µ0 +δσ0,

δ ∈ R, but the process standard deviation and higher moments remain unchanged. In

the second experiment, we assume that the process standard deviation shifts from σ0 to

γσ0, γ > 0, but the process mean and the third and higher moments remain unchanged.

Specifically, if Y and X respectively denote the quality measurements when the process

is in control and out of control, X = Y + δσ0 when the process mean shifts and X =

γY + (1 − γ)µ0 when the process standard deviation shifts.

In each experiment, the two testing examples discussed in Section 3 are used. We

examine the right skewed exponential distribution and the right and left skewed Johnson

unbounded distributions.4 In each experiment, the symmetric and asymmetric control limits

employed satisfy ARL0 = 370, i.e., α = 1/ARL0 = 0.0027.

The performance measure ARL1 is the inverse of the power (1−β), where β is the Type-

II risk. For the X̄ chart, we have β = P{X̄ ∈ (LCLX̄ , UCLX̄)|E(X) = µ0 + δσ0, V(X) =

σ2
0} and for the R chart, we have β = P{R ∈ (LCLR, UCLR)|V(X) = (γσ0)

2}, where

(LCLX̄ , UCLX̄) and (LCLR, UCLR) denote the control limits for the X̄ and R charts. Com-

putation of the Type-II risk β is analogous to that of the Type-I risk α. (See Section 3.)

For the exponential population, α and β are computed numerically; for the Johnson un-

bounded distribution, they are estimated through simulation. We describe the computation

of β for symmetric limits for the exponential distribution below. The computation of β for

asymmetric limits is analogous.

For the exponential distribution, the X̄-chart ARL1 = 1/(1−β), where the Type-II risk

β = P{X̄ ∈ λ ± kX̄λ/
√

n | E(X) = λ + δλ, V(X) = λ2} and kX̄ satisfies Equation (6) with

4The family of Johnson unbounded distributions contains symmetric, left skewed, and right skewed
distributions. However, because the focus of this paper is skewed distributions, we consider only asymmetric
Johnson distributions.
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ARL0 = 370, i.e., α = 0.0027. By defining Yi = Xi − δλ, i = 1, · · · , n, we have

β = P{Ȳ + δλ ∈ λ ± kX̄λ/
√

n | E(Y ) = λ, V(Y ) = λ2}

= G(nλ + kX̄

√
nλ − nδλ) − G(nλ − kX̄

√
nλ − nδλ)

= G̃(n + kX̄

√
n − nδ) − G̃(n − kX̄

√
n − nδ). (10)

Similarly, the R-chart ARL1 = 1/(1 − β), where the Type-II risk β = P{R ∈ µR ± kRσR

|V(X) = (γλ)2}, µR and σR are defined in Section 3, and kR satisfies Equation (8) with

ARL0 = 370, i.e., α = 0.0027. By defining Ti = [Xi − (1− γ)λ]/γ, i = 1, · · · , n, and RT the

range of {T1, · · · , Tn}, we have

β = P{γ RT ∈ µR ± kRσR|V(T ) = λ2} = FR

(µR + kRσR

γ

)
− FR

(µR − kRσR

γ

)
.

First, consider the X̄-chart simulation experiment. The parameter values are set as

follows: the sample size n ∈ {2, 5}, mean shift δ ∈ {0,±.5,±1,±2}, and the Johnson un-

bounded distribution skewness and kurtosis (α3, α4) ∈ {(2, 11), (−2, 11), (5, 70), (−5, 70)}.5

Table 2 presents the simulation results for the exponential distribution and Table 3 for the

Johnson unbounded distribution.

In Table 2, column 1 lists the mean shift δ; columns 2 and 3, the ARL1 value for the

symmetric (denoted Sym.) and asymmetric (Asym.) limits of the X̄ chart for n = 2; and

columns 4 and 5, the ARL1 value for the symmetric and asymmetric limits for n = 5. For

the right-skewed exponential population, Table 2 shows that when the mean shift is positive

(i.e., the mean increases), the symmetric control limits perform better than the asymmetric

limits (i.e., ARL1 is lower); otherwise, they perform worse.

Figure 1 shows the operating characteristic (OC) curve for the exponential distribution

with n = 2 (Figure 1a) and 5 (Figure 1b). Each graph depicts the relationship between the

shift (the horizontal axis) and the probability that X̄ falls within the control limits (the

vertical axis). This probability is given by 1−α when δ is zero and β, otherwise. The solid

line represents the OC curve for the symmetric control limits; the dotted line, the OC curve

for the asymmetric limits. Figure 1 contains similar but more information as in Table 2.

5Since ARL0 and ARL1 are functionally independent of µ0 and σ0, the values of µ0 and σ0 can be set
arbitrarily.
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Figure 1 shows that for a positive shift δ, the symmetric control limits have a lower Type-II

risk β. On the other hand, for a negative shift δ, the situation is reversed: the asymmetric

control limits have a lower Type-II risk β. Notice that when δ decreases from 0, the Type-II

risk for the symmetric limits increases to near 1 and then decreases. For those negative δ

values with Type-II risk close to 1, the corresponding ARL1 is large, e.g., δ = −1, −2 for

n = 2 and δ = −0.5 for n = 5 in Table 2.

FIGURE 1

Figure 1 also shows that when the sample size n increases from 2 to 5, the OC curves for

the symmetric and asymmetric limits come closer. This is due to the effect of the central

limit theorem. The skewness and kurtosis of X̄ are

α3(X̄) =
α3√
n

, α4(X̄) =
α4 − 3

n
+ 3. (11)

As n goes to infinity, α3(X̄) approaches 0 and α4(X̄) approaches 3. Hence, X̄ has an

asymptotically normal distribution, and both the symmetric and asymmetric limits converge

to the symmetric control limits for the normal distribution. Consequently, when n is large,

the OC curves for symmetric and asymmetric limits are almost identical.

Table 3 shows the ARL1 values of the X̄ chart for the Johnson unbounded distribution.

Here, column 1 lists the Johnson population skewness α3 and kurtosis α4; column 2, the

mean shift δ; columns 3 and 4, the ARL1 estimates (denoted ÂRL1(X̄)) for the symmetric

and asymmetric limits with n = 2; and columns 5 and 6, the ARL1 estimates for the

symmetric and asymmetric limits with n = 5. The standard-error estimates of ÂRL1(X̄)

are given in parentheses.

Table 3 shows that the performance impact of symmetric and asymmetric control limits

depends on the skewness α3 and mean shift δ. When α3 > 0 (equivalently, α3(X̄) > 0), the

symmetric limits perform better than the asymmetric limits if the shift δ > 0 and worse

otherwise. Analogously, when α3 < 0, the asymmetric limits perform better if δ > 0 and

worse otherwise. Table 3 also shows that the ARL1 values for α3 > 0 are the same as those

for −α3 with the same kurtosis but δ changing sign. For example, for kurtosis 11, the ARL1

value for α3 = 2 and δ = −2 equals that for α3 = −2 and δ = 2. Furthermore, as the sample
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size n increases, the ARL1 values for the symmetric and asymmetric limits are more alike

due to the central limit theorem.

Figure 2 shows “before” and “after” relationships between the process mean and the

control limits for the Johnson unbounded distribution with in-control mean µ0 = 0, standard

deviation σ0 = 1, skewness and kurtosis (α3, α4)=( 2,11), n = 2, ARL0 = 370, and δ =2.

Figure 2(a) shows the density plot for X̄ when the process mean is in control and has

expected value 0. Figure 2(b) shows the density plot for X̄ when the distribution of the

process mean shifts to µ0+2σ0= 2. In each graph, the symmetric limits±3.1 and asymmetric

limits (−1.2, 3.6) are represented by solid and dotted lines.

FIGURE 2

Figure 2 shows that when the distribution of X is right skewed (i.e., α3 > 0.) and the

mean shift δ > 0, symmetric limits result in a lower Type-II risk than asymmetric limits.

Let β(s) and β(a) denote the Type-II risk for the symmetric and asymmetric limits. As

shown in Figure 2(b), β(a) exceeds β(s), with the difference represented by the shaded area.

Hence, symmetric limits perform better when α3 and δ are both of the same sign (either

both positive or both negative). Otherwise, asymmetric control limits perform better.

Secondly, consider the simulation experiment for the R chart. The simulation results for

the exponential and Johnson distributions are shown in Tables 4 and 5. Table 4 shows the

ARL1 values for the R-chart symmetric and asymmetric control limits, where the quality

characteristic follows an exponential distribution. (Notice that the range R has a positive

skewness because the exponential distribution is unbounded on the right and hence, the

support of R is [0,∞).) The parameter values are set as follows: the sample size n ∈
{2, 5, 10}, the standard-deviation shift γ ∈ {0.5, 0.75, 1, 1.5, 2, 3}, and ARL0 = 370. It

yields 18 experimental points. In Table 4, column 1 lists the standard-deviation shift γ,

columns 2 and 3 the ARL1 for the symmetric and asymmetric limits for n = 2; columns 4

and 5 the ARL1 for n = 5; columns 6 and 7 the ARL1 for n = 10. Table 4 shows that the

symmetric control limits perform better than the asymmetric limits when γ > 1 and worse

when γ < 1. Moreover, when γ goes to 0, the ARL1 for the symmetric limits goes to infinity

for n = 2, 5, 10. This is because in this experiment, the symmetric limits have LCL=0 and

hence are less powerful in detecting a downward shift in the standard deviation.
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Figure 3 illustrates the symmetric and asymmetric R-chart control limits for the ex-

ponential distribution. The exponential in-control mean µ0 = 1 and in-control standard

deviation σ0 = 1. Other parameter values are set as follows: the sample size n = 5,

standard-deviation shift γ = 2, and ARL0 = 370. Figures 3(a) and 3(b) respectively show

the PDF curve of the range R when the process is in control with standard deviation 1 and

out of control with the standard deviation shifts from 1 to 2 (i.e., γ =2). In each graph,

the symmetric limits (0, 7.30) and asymmetric limits (0.21, 7.99) are represented by solid

and dotted lines.

FIGURE 3

Figure 3 shows that when the distribution of the range R is right skewed and the process

standard deviation shifts upward (i.e., γ > 1), the symmetric control limits provide a lower

Type-II risk than the asymmetric limits. Let β
(s)
R and β

(a)
R denote the Type-II risk for

the symmetric and asymmetric limits. Figure 3(b) shows that β
(a)
R is larger than β

(s)
R ,

with difference shown in the shaded area. Hence, the symmetric limits are better than the

asymmetric control limits in this case.

Finally we compare the symmetric and asymmetric control limits for the Johnson

unbounded distribution. Suppose that the quality characteristic follows a Johnson un-

bounded distribution with the in-control mean µ0 = 0 and standard deviation σ0 = 1.

The parameter values are set as follows: the Johnson unbounded skewness and kurtosis

(α3, α4) ∈ {(2, 11), (2, 70), (5, 70)}, sample size n ∈ {2, 5}, shift γ ∈ {0.5, 0.75, 1, 1.5, 2, 3},
and ARL0 = 370. It yields 36 experimental points. Only positive values of α3 are consid-

ered since the range R for a Johnson population with skewness α3 and that for a Johnson

with skewness −α3 (and same kurtosis) have the same distribution. The values of sym-

metric and asymmetric control limits and corresponding ARL1 are estimated by simulation

experiments, using the estimates of µR and σR that are listed in Table 1.

Table 5 shows the simulation results for the Johnson unbounded distribution. Here,

column 1 lists the Johnson skewness α3 and kurtosis α4; column 2, the standard-deviation

shift γ, column 3, the skewness α3,R of the range R for n = 2, columns 4 and 5, the ARL1

estimates (denoted ÂRL1(R)) for the R-chart symmetric and asymmetric limits with n =

2; columns 6 to 8, α3,R and ÂRL1(R) for the symmetric and asymmetric limits with n = 5.
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The standard-error estimates of ÂRL1(R) are given in parentheses. Table 5 shows that the

symmetric control limits perform better (i.e., more powerful in detecting an increase in the

process variation) than the asymmetric limits when γ > 1 and worse when γ < 1. These

results coincide with those in Table 4 because the α3,R values in Table 5 are all positive.

Despite lack of results for negative α3,R here, our earlier work (Chen and Kuo, 2007) shows

that the results for negative α3,R are reversed of those for positive α3,R.

5 CONCLUSIONS

This work compares the performance of symmetric and asymmetric control limits for X̄ and

R charts. The performance measure is the out-of-control ARL, while keeping the in-control

ARL at a specified value. Our results show that for both X̄ and R charts, the performance

of the symmetric and asymmetric limits depend on the skewness of the charting statistic (X̄

for the X̄ chart and R for the R chart) and the shift direction. If the charting statistic has a

right-skewed distribution, the symmetric limits perform better when the monitored process

property (mean for the X̄ chart and standard deviation for the R chart) shifts upward and

worse otherwise. If the charting statistic has a left-skewed distribution, the outcome is

reversed. Although neither type of the control limits dominates, the asymmetric limits are

more robust to the shift in the process mean or variation.

The skewnesses of the sample mean X̄ and sample range R depend on the distribution

of the quality characteristic X . Since the skewness of X̄ equals the skewness of X divided

by
√

n, X̄ and X have the same direction of skew. The direction of skew for the range

R, however, depends on whether the distribution of X is bounded or unbounded. If the

distribution of X is unbounded on one or both sides, R has a right-skewed distribution. If

the distribution of X is bounded, the distribution of R is right skewed when the sample size

n is small, symmetric when n is moderate, and left skewed when n is large.

The sample size n has different effects on the X̄ and R charts. For the X̄ chart, the

performances of the symmetric and asymmetric limits differ less when the sample size n

increases due to the central limit theorem. For the R chart, the difference of the perfor-

mances of symmetric and asymmetric limits decreases with n when γ > 1 but increases

with n when γ < 1.

Directions of future research include (1) deriving the asymmetric limits for autocorre-
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lated data with nonnormal marginal distribution and (2) comparing the symmetric and

asymmetric limits of the X̄ and R charts for autocorrelated data.
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Table 1: Values of µ̂R, σ̂R, and their standard-error estimates (in parentheses) for the

Johnson unbounded distributions with µ0 = 0, σ0 = 1, skewness and kurtosis (α3, α4) =
(2, 11), (2,70), (5, 70), and sample size n = 2, 5

n = 2 n = 5
(α3, α4) µ̂R σ̂R µ̂R σ̂R

(2, 11) 1.0180 (0.0005) 0.980 (0.001) 2.1283 (0.0007) 1.189 (0.001)
(2, 70) 0.9171 (0.0006) 1.072 (0.003) 1.98 (0.001) 1.490 (0.003)
(5, 70) 0.8464 (0.0007) 1.130 (0.003) 1.809 (0.001) 1.547 (0.003)

Table 2: The ARL1 values of the symmetric and asymmetric X̄-chart control limits for the
exponential distribution with sample size n = 2, 5, shift δ = 0, ±0.5, ±1, ±2, and ARL0 =
370

n = 2 n = 5
Sym. Asym. Sym. Asym.

δ ARL1(X̄) ARL1(X̄) ARL1(X̄) ARL1(X̄)

−2 14062 1.10 1.28 1.02
−1 2245 1.64 47.5 1.46
−0.5 908 3.52 2404 4.23

0 370 370 370 370
0.5 153 303 64.0 122
1 64.2 126 13.1 23.2
2 12.1 22.8 1.36 1.81
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Table 3: Estimates ÂRL1(X̄) of ARL1 for the symmetric and asymmetric X̄-chart control

limits for the Johnson unbounded distribution with skewness and kurtosis (α3, α4) = (2,11),
(−2,11), (5,70), (−5,70), sample size n = 2, 5, shift δ = 0, ±0.5, ±1, ±2, and ARL0 = 370

(Note: Standard-error estimates for ÂRL1(X̄) are given in parentheses.)

n = 2 n = 5
Sym. Asym. Sym. Asym.

(α3, α4) δ ÂRL1(X̄) ÂRL1(X̄) ÂRL1(X̄) ÂRL1(X̄)

−2 215 (1) 1.1 (0) 1.3 (0) 1 (0)
−1 1534 (7) 2.3 (0.01) 56 (0.2) 1.6 (0)
−0.5 766 (3) 9 (0.04) 1763 (8) 6 (0.02)

(2,11) 0 370 (2) 369 (2) 370 (2) 372 (2)
0.5 173 (0.8) 348 (1.6) 75 (0.3) 155 (0.7)
1 78 (0.3) 163 (0.7) 16 (0.06) 31 (0.1)
2 15 (0.06) 32 (0.1) 1.4 (0) 2 (0.01)
−2 15 (0.06) 32 (0.1) 1.4 (0) 2 (0.01)
−1 78 (0.3) 163 (0.7) 16 (0.06) 31 (0.1)
−0.5 173 (0.8) 348 (1.6) 75 (0.3) 155 (0.7)

(−2,11) 0 370 (2) 369 (2) 370 (2) 372 (2)
0.5 766 (3) 9 (0.04) 1763 (8) 6 (0.02)
1 1534 (7) 2.3 (0.01) 56 (0.2) 1.6 (0)
2 215 (1) 1.1 (0) 1.3 (0) 1 (0)
−2 1473 (7) 1.1 (0) 3.65 (0.01) 1.0 (0)
−1 769 (3) 1.4 (0) 1582.5 (7) 1.2 (0)
−0.5 544 (2) 3 (0.01) 800 (4) 3 (0.01)

(5,70) 0 372 (2) 370 (2) 372 (2) 370 (2)
0.5 249 (1) 508 (2) 155 (1) 338 (2)
1 159 (0.7) 344 (2) 57 (0.3) 137 (1)
2 58 (0.3) 146 (0.6) 5 (0.02) 16 (0.1)
−2 58 (0.3) 146 (0.6) 5 (0.02) 16 (0.1)
−1 159 (0.7) 344 (2) 57 (0.3) 137 (1)
−0.5 249 (1) 508 (2) 155 (1) 338 (2)

(−5,70) 0 372 (2) 370 (2) 372 (2) 370 (2)
0.5 544 (2) 3 (0.01) 800 (4) 3 (0.01)
1 769 (3) 1.4 (0) 1582.5 (7) 1.2 (0)
2 1473 (7) 1.1 (0) 3.65 (0.01) 1.0 (0)

Table 4: The ARL1 values of symmetric and asymmetric R-chart control limits for the
exponential distribution with sample size n = 2, 5, 10, shift γ = 0.5, 0.75, 1, 1.5, 2, 3, and

ARL0 = 370

n = 2 n = 5 n = 10
Sym. Asym. Sym. Asym. Sym. Asym.

γ ARL1(R) ARL1(R) ARL1(R) ARL1(R) ARL1(R) ARL1(R)

0.5 137,205 370 547,586 69.3 1,231,606 17.1
0.75 2,660 513 4,217 262 5,524 130
1 370 370 370 370 370 370

1.5 51.6 76.2 32.8 51.1 25.2 39.7
2 19.3 26.7 10.0 14.0 6.9 9.5
3 7.2 9.0 3.3 4.0 2.2 2.6
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Table 5: Estimates ÂRL1(R) of ARL1 for the symmetric and asymmetric R-chart control
limits for the Johnson unbounded distribution with skewness and kurtosis (α3, α4) = (2,11),

(2,70), (5,70), sample size n = 2, 5, shift γ = 0.5, 0.75, 1, 1.5, 2, 3, and ARL0 = 370 (Note:
The estimate of the standard error of ÂRL1(R) is listed in parentheses.)

n = 2 n = 5
Sym. Asym. Sym. Asym.

(α3, α4) γ α3,R ÂRL1(R) ÂRL1(R) α3,R ÂRL1(R) ÂRL1(R)

(2,11) 0.5 2.20 253*102 (114) 380 (3) 1.85 434*102 (196) 53.6 (0.4)
0.75 1709 (8) 493 (4) 228*10 (10) 233 (1)
1 370 (2) 372 (2) 374 (2) 372 (2)

1.5 64.3 (0.3) 97.3 (0.4) 46.0 (0.2) 79.4 (0.3)
2 23.8 (0.1) 35.2 (0.2) 14.1 (0.1) 23.0 (0.1)
3 8.27 (0.04) 11.0 (0.1) 4.01 (0.02) 5.59 (0.02)

(2,70) 0.5 3.93 431*10 (19) 342 (2) 5.53 599*10 (27) 56 (0.4)
0.75 974 (4) 424 (3) 1128 (5) 226 (1)
1 370 (2) 371 (2) 372 (2) 371 (2)

1.5 104 (0.5) 179 (1) 86.4 (0.4) 156 (1)
2 46.1 (0.2) 83.9 (0.4) 33.6 (0.1) 65.9 (0.3)
3 16.7 (0.1) 28.9 (0.1) 10.38 (0.04) 18.6 (0.1)

(5,70) 0.5 4.31 449*10 (20) 400 (3) 5.03 643*10 (29) 58.7 (0.4)
0.75 998 (4) 483 (3) 1110 (5) 228 (1)
1 370 (2) 367 (2) 371 (2) 370 (2)

1.5 107 (1) 165 (1) 89.7 (0.4) 159 (1)
2 49.3 (0.2) 78.3 (0.4) 36.6 (0.2) 62.3 (0.3)
3 19.4 (0.1) 29.1 (0.1) 12.2 (0.1) 19.2 (0.1)
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Figure 1: The operating characteristic curves for symmetric and asymmetric control limits
and an exponential population with sample size n = 2, 5, and ARL0 = 370

Figure 2: Illustration of the symmetric and asymmetric control limits on the X̄ density plot

for the Johnson unbounded distribution with the process mean equal to the target µ0 = 0 in
Subfigure (a) and mean shifted to µ0 +2σ0 = 2 in Subfigure (b), where the process standard

deviation σ0 = 1, skewness α3 = 2 and kurtosis α4 = 11 (the skewness and kurtosis of X̄
are 1.414 and 7), sample size n = 2, and ARL0 = 370
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Figure 3: Illustration of the symmetric and asymmetric R-chart limits on the density plot of

the range R for the exponential distribution with the standard deviation σ0 = 1 (in-control
state) in Subfigure (a) and standard deviation shifted to 2σ0 = 2 (out-of-control state) in

Subfigure (b), where the process mean µ0 = 1, sample size n = 5, and ARL0 = 370
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