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Abstract

In the design of the X control chart, both the sample size m of X and the control-limit

factor k (the number of standard deviations from the center line) must be determined.

We address this problem under the assumption that the quality characteristic follows an

autocorrelated process with known covariance structure but unknown marginal distribution

shape. We propose two methods for determining m and k, chosen to minimize the out-

of-control ARL (average run length) while maintaining the in-control ARL at a specified

value. Method 1 calculates the ARL values as if the sample means were independent normal

random variables; Method 2 calculates the ARL values as if the sample means were an AR(1)

process. Method 2 outperforms Method 1 when the correlation and mean shift are both

high. We also modify Methods 1 and 2 with a minimum sample size of 30; the modification

moves the in-control ARL closer to the specified value. Our numerical results show that the

modified Method 2 performs better than two previous design procedures, especially when

the correlation is high.

Keywords: average run length, covariance stationary, optimization, SPC
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1 Introduction

Control charts send a signal when observed process data {Xt, t = 1, 2, . . .} appear to be,

in some sense, out of control. When out of control is based on a shift in the process mean,

it is natural to send a signal when the data stray far from the target mean µ. When the

process data {Xt} are assumed to be stationary, except for the instant when the mean shift

occurs, an X chart can be used, where Xj = m−1 ∑jm
t=(j−1)m+1 Xt is the jth sample average

of m contiguous discrete-time observations, j = 1, 2, . . . (or, analogously for continuous-

time data, the time average X j = m−1
∫ jm
(j−1)m Xtdt, where Xt is the quality measurement

at time t). The signal is sent when the first Xj does not lie between the lower and upper

control limits, typically µ − dl and µ + du, where dl and du are positive constants. The

design of X charts involves determining appropriate values of the sample size m and these

two constants. The chart is symmetric when dl = du.

We consider the design of symmetric X control charts when the in-control process data

{Xt} are assumed to be stationary with known mean µ, known standard deviation σ,

known autocorrelations ρh for h = 1, 2, . . ., but with unknown marginal-distribution shape.

In addition, the process mean is assumed to shift to µ + δσ with no change in values of the

other moments when the process goes out of control. These assumptions imply that for any

sample size m the variance of the sample mean is

σ2
X

=
σ2

m

[
1 + 2

m−1∑

h=1

(1− h

m
)ρh

]
(1)

both when the process is in control and after it is out of control. We define the optimal

X chart to minimize ARLδ subject to a specified value L for ARL0. Here ARL0 denotes

the in-control average run length (ARL), i.e., the expected number of observations Xt until

the signal is sent when the process is in control with mean µ; and ARLδ denotes the out-

of-control ARL, i.e., the ARL when the process data have mean µ + δσ, where δ is any

non-zero constant. We seek design algorithms that, given values µ, σ, {ρh}, δ, and L,

compute the optimal integer sample size m∗ and optimal positive real-number distance d∗

so that the signal is sent when the first sample mean arising from a sample of size m∗ lies
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outside µ ± d∗. To keep our discussion independent of the scaling of Xt, we use k rather

than d, where d = kσX .

Three previous papers also design control charts for the mean µ under the assumption

that the process data are autocorrelated with a known in-control mean, known variance,

and known autocorrelations, but with unknown marginal distribution. Runger and Wille-

main (1995) design X charts by choosing the sample size m to obtain lag-1 sample-mean

autocorrelation Corr(Xj, Xj+1) ≈ 0.1 and then choosing k to obtain ARL0 = L under

the assumption that the sample means are independent and identically distributed (iid)

normal random variables; we refer to this X chart as R&W. Kim et al. (2006) design

MFC (model-free CuSum) charts with sample size m = 1 and control limits that obtain

ARL0 = L using a functional central limit theorem and the known asymptotic variance con-

stant. Kim et al. (2007) design DFTC (distribution-free tabular CuSum) charts that use

sample means arising from samples of size m to obtain lag-1 sample-mean autocorrelation

Corr(Xj, Xj+1) ≤ 0.5 and control limits that obtain ARL0 = L.

Procedures that assume known autocorrelations and unknown marginal distribution

can be useful in at least three ways. First, as mentioned in the conclusions of Kim et al.

(2007), the procedures “can be used as the foundation for the ultimate development of an

SPC (statistical process control) procedure for correlated processes that can be directly

applied in practice.” Second, the procedures can be applied directly; for example, because

autocorrelations can arise from the logical flow of the system (as in queueing data) while

the marginal distribution depends upon the stochastic components of the system (such as

service times), a change in the system (such as a new customer class) can have known

autocorrelations but unknown marginal distribution. Third, the procedures extend the

important special case in which only iid data are considered.

Applications that use autocorrelated data are described in Pandit and Wu (1983), Hahn

(1989), Koo and Case (1990), Tucker et al. (1993), English and Case (1994), Wardell et al.

(1994), Runger and Willemain (1995), Faltin et al. (1997), and Boyles (2000).

The structure of this paper is as follows. Section 2 describes the optimization model

for determining the values of m and k. Two methods for computing the optimal values of

m and k are proposed and are further modified with a sample size at least 30 so that the
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in-control ARL is closer to the specified value. Numerical results show that the modified

Method 2 performs better than the modified Method 1 when the autocorrelation is high

and the mean shift is moderate. Section 3 empirically compares the performance of the

modified Method 2 to that of the R&W and DFTC charts; the MFC chart, dominated by

the DFTC chart, is not considered. Section 4 gives our summary and conclusions.

2 A New Design Procedure for the X Chart

The X chart is a useful SPC tool for monitoring the process mean. It works as fol-

lows. First, the products are divided into consecutive samples of m quality measurements

X1, . . . , Xm. For each sample, the sample mean X is computed. If it falls outside the

control limits µ ± kσ
X

, an out-of-control signal is recorded in the control chart. (Recall

that σX can be computed using Equation (1) because σ and {ρh} are known.) The quality-

control engineers then determine whether there is an assignable cause. If an assignable

cause is identified, appropriate action is taken to tune the production process and restore

the in-control state.

The control-chart design parameters m and k are chosen to minimize the out-of-control

ARL while maintaining the in-control ARL at a specified value L. We describe the opti-

mization model for determining the values of m and k in Section 2.1. Sections 2.2 and 2.3

propose two methods for computing the optimal values of m and k. Section 2.4 compares

Methods 1 and 2 empirically and presents modifications of both methods that bring the

in-control ARL closer to L.

2.1 The Optimization Model for Setting m and k

A common performance measure in control-chart design is the ARL. A good control

scheme results in a long ARL when the process is in control and a short ARL when the

process is out of control. We would like the values of m and k to depend on both the

in-control and out-of-control ARLs. Therefore, we choose the values of the X-chart design

parameters m and k to minimize the out-of-control ARL while keeping the in-control ARL

at a specified value L. That is, the values of m and k are chosen to satisfy the following
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optimization criterion:

min ARLδ

s.t. ARL0 = L , (2)

m ∈ {1, 2, . . . , L}, k > 0.

Both ARL0 and ARLδ are measured in terms of the number of observations rather than the

number of X points. For example, suppose that the quality measurements are independently

and normally distributed, m = 5, and k = 3. Then the average number of X charting

points until a false alarm occurs is [1+Φ(−3)−Φ(3)]−1= 370, where Φ(·) is the cumulative

distribution function (cdf) of the standard normal distribution (Montgomery, 2005). Hence,

the number of observations until a false alarm occurs is ARL0 = (5)(370) = 1850. The fixed

value of the in-control ARL enables us to seek the values of the design parameters that

result in the lowest possible out-of-control ARL. This is reasonable because when δ is large,

the shift is easier to detect, and hence the sample size m need not be large.

Ideally the values of m and k would be chosen to maximize ARL0 and minimize ARLδ

simultaneously. Unfortunately, for a fixed value of k, as the sample size m increases, both

ARL0 and ARLδ increase. Similarly, for any fixed m, as k increases, both ARL0 and ARLδ

increase. Therefore, there are no paired values of m and k that would simultaneously

optimize both ARL0 and ARLδ.

Figure 1 illustrates the tradeoff between ARL0 and ARLδ for independently and nor-

mally distributed quality measurements {Xt} and the shift δ = 2. Contour plots are shown

for ARL0 = 102, 103, and 104 (dot curves) and ARLδ = 2, 3, . . ., 10 (solid curves), calculated

using Equation (3) in Section 2.2 below. The triangles in the ARL0 curves and the circles

in the ARLδ curves denote all possible (m, k) combinations for the contour plots. Clearly,

as we increase the sample size m while keeping k constant (e.g., by going from Point A

to Point B), both ARL0 and ARLδ increase. Similarly, as we increase k while keeping m

constant (e.g., by going from Point B to Point C), both ARL0 and ARLδ increase.

Since no control scheme can optimize ARL0 and ARLδ simultaneously, we seek the

control scheme that minimizes the value of ARLδ for a fixed ARL0. The resulting values of
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Figure 1: Contour plots on the (m, k) plane for ARL0 = 102, 103, and 104 and ARLδ = 2,
3,. . ., 10, where the quality characteristic is iid normal and the shift δ = 2

m and k then satisfy Equation (2). Figure 2 shows these optimal values for ARL0 = 103.

The optimal point is (m, k) = (3, 2.97), corresponding to the minimum ARLδ = 4.35.

The ARLs in the optimization model depend on the marginal distribution, as do the

optimal sample size m∗ and the optimal number k∗ of standard deviations from the center

line. Because the marginal distribution is assumed to be unknown, Methods 1 and 2 below

use the central limit theorem to obtain approximate normality of the sample means.

2.2 Method 1: Independent Normal Sample Means

Let {X1, X2,. . .} denote successive nonoverlapping sample means, each arising from a

sample of size m, to be plotted in the X control chart. Method 1 assumes that the sample

means are iid normal, corresponding to a large sample size m with mean E(X) and variance

σ2
X

, as shown in Equation (1). In this case, the run length in units of m follows a geometric

distribution and the out-of-control ARL is

ARLδ =
m

P{X 6∈ µ ± kσ
X

| E(X) = µ + δσ} =
m

1 + Φ(−k − δ
√

c) − Φ(k − δ
√

c)
, (3)
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Figure 2: ARLδ contour plots and the corresponding optimal point on the (m, k) plane for
the constraint ARL0 = 103, where the quality measurements are iid normal and the shift δ
= 2

where c = σ2/σ2
X

= m/[1 + 2
∑m−1

h=1 (1 − h/m)ρh]. (See Runger and Willemain, 1995.)

When the process is in control, the ARL is ARL0 = m/[1 + Φ(−k)− Φ(k)] = m/[2Φ(−k)].

(Recall that both ARL0 and ARLδ are measured in terms of the number of observations.)

Using the above formulas for ARL0 and ARLδ, we find the values of m and k that

satisfy the optimization model in Equation (2). The value of k that meets the constraint

ARL0 = L is

k = −Φ−1[m/(2L)] , (4)

where Φ−1 is the inverse function of Φ. Substituting k = −Φ−1[m/(2L)] into Equation (3),

we can find the value of m that minimizes ARLδ and compute the corresponding k value.

In summary, given {ρh}, δ, and L, Method 1 performs a one-dimensional search on

m to determine m∗ = argminm{ARLδ(m)}, where ARLδ(m) is computed using Equation

(3) with sample size m and factor k = −Φ−1[m/(2L)]. Using Equation (4), the method

then determines the optimal value k∗ = −Φ−1[m∗/(2L)]. Because there are local minima,

an explicit search over {1, 2, . . . , L} is necessary to determine m∗, unless care is taken to

develop a more-efficient search. Computation time is negligible.
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2.3 Method 2: AR(1) Sample Means

The advantage of Method 1 is its simplicity. However, there are drawbacks. One is that

Method 1 ignores correlations between successive sample means, which may be high when

m is small and the autocorrelations {ρh} are high. This phenomenon may cause the values

of m and k obtained from Method 1 to be far from the true optimal values. Method 2 seeks

to remedy this problem by modeling the sample means {X1, X2,. . .} as an AR(1) process

with its parameters matching the mean (µ or µ + δσ), variance, and lag-1 autocorrelation

of the sample means. We choose the AR(1) model because the corresponding ARL0 and

ARLδ can be computed numerically by a Markov chain approach. The values of m and

k satisfying Equation (2) can then be computed numerically as well. By expanding on

this approach, one can devise more complicated models (e.g., AR(p) with p > 1) that may

better match the autocovariance structure of the sample means. However, the corresponding

ARL0 and ARLδ would be harder to compute and may need to be estimated via simulation

experiments.

The AR(1) data process {Zt} is a time series process with (Zt−µz) = φz(Zt−1−µz)+εt,

where |φz| < 1, µz = E(Zt) for t = 1, 2,. . ., and the random error εt is independently

distributed as N(0, σ2
ε ). The marginal distribution of the AR(1) process is N(0, σ2

ε /(1−φ2
z))

and the lag-h autocorrelation is φ
|h|
z . The AR(1) model has three parameters: the AR(1)

marginal mean µz , the lag-1 autocorrelation φz, and the variance σ2
ε of the random error.

To fit an AR(1) model to the sample means, we impose three requirements on the AR(1)

parameters:

µz = E(X) =





µ if ARL0 in Equation (2) is computed

µ + δσ if ARLδ in Equation (2) is computed
,

φz = Corr(X1, X2) =

∑m
h=1 hρh +

∑m−1
h=1 hρ2m−h

m + 2
∑m−1

h=1 (m − h)ρh

, (5)

σ2
ε = (1 − φ2

z)σ
2
X

,

where the lag-1 autocorrelation φz can be computed analytically, because the autocorrela-

tions {ρh} are known.

Since the sample means {X1, X2,. . .} are assumed to follow an AR(1) process, the
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average run length can be computed numerically. Lucas and Saccucci (1990) propose a

Markov-chain approximation for computing the average run length of EWMA (exponentially

weighted moving average) control charts. Since the AR(1) process behaves like an EWMA

for independent normal data, we can use the Markov-chain approximation to compute ARL0

and ARLδ subject to Equation (2).

In summary, given µ, σ, {ρh}, δ, and L, Method 2 performs a two-dimensional search on

(m, k) to determine (m∗, k∗) that minimizes ARLδ(m, k) subject to ARL0(m, k) = L over

the positive integers m and positive real numbers k, where ARL0(m, k) and ARLδ(m, k) are

the ARL0 and ARLδ values corresponding to the sample size m and factor k. For any pair

(m, k), Method 2 computes σ
X

(m) using Equation (1), φz(m) and σ2
ε (m) using Equation

(5), and ARL0(m, k) and ARLδ(m, k) using Lucas and Saccucci (1990) with means µ and

µ + δσ, respectively. (For clarity, we denote σX , φz, and σε as functions σX(m), φz(m),

and σε(m) of the sample size m.) The two-dimensional search can, for example, enumerate

m over the set {1, 2, . . . , L}, for each m finding k∗(m) such that ARL0(m, k∗(m)) = L, as

determined by a one-dimensional root-finding search on k. Though the computation time is

longer than for Method 1, the exact time required and Markov-chain approximation error

depend upon how the state space is truncated.

2.4 Comparisons of Methods 1 and 2

We begin this section by testing the performance of Methods 1 and 2, first using an

AR(1) process and then using an ARTA (AutoRegressive To Anything) process (Cario and

Nelson, 1996). We show that for both processes, Method 2 performs better than Method

1, though Method 1 has the advantage of computational simplicity. Moreover, Method 2

outperforms Method 1 when the marginal distribution of the quality characteristic X is

normal and both the autocorrelation and shift are large. When the marginal distribution

is nonnormal and the shift δ is large, the ARL0 values computed by Methods 1 and 2 differ

from the specified value L.

At the end of the section, we modify Methods 1 and 2 by requiring the sample size to

be at least 30. In both modified methods, the ARL0 values are closer to L than in the

corresponding unmodified method. Numerical results show that the modified Method 2
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performs slightly better than the modified Method 1.

The first numerical comparison experiment employs AR(1) data. Suppose that when the

process is in control, the quality characteristic measurements {Xt} follow an AR(1) process

with mean µ, variance σ2, and lag-1 autocorrelation ρ1. Kang and Schmeiser (1987) have

shown that the sample means {X1, X2,. . . } then follow an ARMA(1, 1) process. In this

special case, we can compute the ARL numerically using a two-dimensional Markov-chain

approximation approach presented in Jiang et al. (2000).

The following parameter values are employed in the AR(1) comparison test: the lag-1

autocorrelation ρ1 ∈ {0, 0.25, 0.5, 0.9, 0.95, 0.99}, the shift δ ∈ {0.25, 0.5, 0.75, 1, 1.5, 2, 2.5,

3, 4}, and the desired average run length L = 10000, for a total of 54 (= 6 · 9) experimental

points. (Note that the values of ARLs, and hence those of the Method-1, Method-2, and

true optimal solutions m∗ and k∗, are independent of the location parameter µ and scale

parameter σ.) Table 1 shows the results. Columns 1 and 2 list the values of ρ1 and δ;

columns 3 to 6, the Method-1 m∗ and k∗ values and those of the corresponding ARL0 and

ARLδ; columns 7 to 10, the Method-2 m∗ and k∗ values and those of the corresponding ARL0

and ARLδ; columns 11 to 13, the actual m∗ and k∗ values and the value of the corresponding

ARLδ. When the actual optimal values of m and k are used, the corresponding ARL0 value

is exactly equal to 10000.

The results in Table 1 show that the performance of Method 2 is equal to or better than

that of Method 1 in all cases, and the Method-2 m∗ and k∗ values result in an ARLδ that is

very close to the true optimal value. (Note that because of rounding effects, in some cases

the Method-1 and/or Method-2 m∗ and k∗ values differ from the true m∗ and k∗ values,

but the corresponding ARLδ values are the same.) This outcome is foreseeable: Method 2

matches the lag-1 autocorrelation of the sample means and hence yields a lower ARLδ and

an ARL0 closer to 10000. The relative performance of Method 1 declines as ρ1 increases.

When ρ1 = 0, the sample means are iid normal, and both methods yield the actual optimal

values of m and k. When ρ1 is small or moderate, Method 1 performs almost as well as

Method 2 for all values of δ. As ρ1 increases, the autocorrelation between adjacent sample

means increases, and hence Method 2 outperforms Method 1.

Likewise, the performance of Method 1 deteriorates as δ increases. When δ is small,
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Table 1: The Method-1 and Method-2 design outputs and the true optimal solutions for

AR(1) processes with ρ1 = 0, 0.25, 0.5, 0.9, 0.95, 0.99, and L = 10000

Method 1 Method 2 True optimal solutions
ρ1 δ m k ARL0 ARLδ m k ARL0 ARLδ m k ARLδ

0 0.25 133 2.476 104 202 133 2.476 202
0.5 45 2.841 104 65 45 2.841 65
0.75 23 3.048 104 32 23 3.048 32
1 14 3.195 104 20 14 3.195 20

1.5 7 3.390 104 9.7 same as for Method 1 7 3.390 9.7
2 4 3.540 104 5.9 4 3.540 5.9

2.5 3 3.615 104 3.9 3 3.615 3.9
3 2 3.719 104 2.9 2 3.719 2.9
4 1 3.891 104 1.8 1 3.891 1.8

0.25 0.25 194 2.338 104 302 194 2.338 104 302 194 2.338 302
0.5 67 2.711 104 98 67 2.711 104 98 67 2.711 98
0.75 35 2.920 104 50 35 2.920 104 50 35 2.920 50
1 21 3.076 104 30 22 3.062 104 30 21 3.076 30

1.5 10 3.291 104 15 11 3.264 104 15 11 3.264 15
2 6 3.432 10001 8.6 6 3.432 104 8.6 6 3.432 8.6

2.5 4 3.540 10001 5.6 4 3.540 9999 5.6 4 3.540 5.6
3 2 3.719 10002 4.3 3 3.615 9999 3.9 3 3.615 3.9
4 1 3.891 10013 2.5 1 3.89 104 2.5 2 3.719 2.3

0.5 0.25 295 2.177 104 475 296 2.175 104 475 296 2.175 475
0.5 105 2.559 104 159 106 2.556 104 159 106 2.556 159
0.75 55 2.776 104 81 56 2.770 104 81 55 2.776 81
1 34 2.929 10001 49 35 2.920 104 49 34 2.929 49

1.5 16 3.156 10002 24 17 3.138 104 24 17 3.138 24
2 9 3.320 10004 14 10 3.290 9999 14 10 3.290 14

2.5 5 3.481 10010 9.1 6 3.431 9998 8.9 6 3.431 8.9
3 2 3.719 10062 7.0 4 3.540 9975 6.1 4 3.540 6.1
4 1 3.891 10185 3.5 1 3.886 104 3.5 1 3.886 3.5

0.9 0.25 940 1.675 104 1754 945 1.672 104 1754 944 1.673 1754
0.5 393 2.061 10001 664 396 2.058 104 664 399 2.055 664
0.75 217 2.296 10002 355 222 2.287 104 355 224 2.283 355
1 137 2.465 10004 222 143 2.449 104 222 142 2.452 222

1.5 64 2.727 10016 110 72 2.687 9999 110 70 2.696 110
2 1 3.891 16833 130 40 2.877 9997 64 40 2.877 64

2.5 1 3.891 16833 59 22 3.058 9987 41 25 3.021 41
3 1 3.891 16833 32 1 3.753 104 28 9 3.311 28
4 1 3.891 16833 14 1 3.753 104 13 1 3.753 13

0.95 0.25 1351 1.494 10000 2730 1362 1.490 104 2730 1367 1.488 2729
0.5 616 1.869 10002 1108 625 1.863 104 1108 623 1.864 1108
0.75 352 2.106 10004 610 364 2.092 104 610 362 2.095 610
1 224 2.284 10009 388 236 2.263 104 387 236 2.263 387

1.5 1 3.891 25279 606 120 2.511 9999 194 119 2.514 194
2 1 3.891 25279 231 66 2.713 9994 113 68 2.704 113

2.5 1 3.891 25279 108 1 3.634 104 78 40 2.871 73
3 1 3.891 25279 60 1 3.634 104 47 1 3.634 47
4 1 3.891 25279 28 1 3.634 104 23 1 3.634 23

0.99 0.25 2285 1.204 10003 5959 2357 1.186 104 5957 2346 1.188 5956
0.5 1 3.891 77270 28740 1443 1.459 104 3081 1458 1.454 3081
0.75 1 3.891 77270 14216 932 1.678 104 1856 936 1.676 1856
1 1 3.891 77270 7369 638 1.851 9999 1235 633 1.855 1235

1.5 1 3.891 77270 2374 317 2.140 9992 648 330 2.125 648
2 1 3.891 77270 960 1 3.253 104 397 108 2.511 390

2.5 1 3.891 77270 472 1 3.253 104 240 17 2.946 239
3 1 3.891 77270 273 1 3.253 104 156 1 3.253 156
4 1 3.891 77270 129 1 3.253 104 87 1 3.253 87
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the Method-1 sample size m∗ is large, and hence the iid normal presumption is nearly

valid. However, as δ increases, the Method-1 m∗ decreases, causing the ARL0 to deviate

increasingly from the specified value of 10000.

Method 2 remedies the shortcomings of Method 1 by modeling the sample means {Xj}
as an AR(1) process so that the correlations among the sample means can be taken into

account. The computed values of m and k are either identical to or very close to the true

optimal values, except for some minor discrepancies when ρ1 and δ are both large. When

ρ1 is large and m is small, the modeled AR(1) deviates from the true ARMA(1, 1) process

of the sample means, causing the Method-2 approximation error to increase. However, even

when δ is large enough to result in a small m∗, the magnitude of the approximation error

is not significant.

The second numerical comparison experiment employs ARTA data. The ARTA process

{Xt} of order p, denoted ARTA(p), is a stationary time series transformed from a stan-

dardized Gaussian AR(p) process {Zt}: Xt = F−1(Φ(Zt)), where F (·) is the ARTA(p)

marginal cdf. (See Cario and Nelson, 1996, for details.) Cario and Nelson (1998) provide

ARTAFACTS and ARTAGEN software for fitting and generating from an ARTA(p) process;

we use the ARTAGEN software to generate ARTA data in our simulation experiments. We

choose the ARTA(p) implementation because it allows the specification of the autocorre-

lations ρ1,. . ., ρp of the first p lags to be arbitrary, provided that certain restrictions are

observed. First, the autocorrelations may not include certain values in the interval [−1, 0)

for the time series to be stable and for the autocorrelation matrix to be positive definite

(Ghosh and Henderson, 2003). Second, when specifying autocorrelation values, we must

differentiate between the absolute minimum -1 and the effective minimum, which depends

on the marginal cdf F . The effective minimum is equal to the absolute minimum value -1

only when the cdf F is symmetric (Chen, 2001). For other marginal cdfs, the effective min-

imum value is higher. For example, if the marginal distribution is exponential, the effective

minimum correlation is −0.645.

In our numerical experiment, we assume that when the process is in control, the qual-

ity measurements {Xt} follow an ARTA(1) process with lag-1 autocorrelation ρ1 and the

Student-t marginal distribution with 10 degrees of freedom (skewness = 0 and kurtosis =
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Table 2: The Method-1 and Method-2 design outputs and the true optimal solutions for

ARTA(1) processes with t10 marginal distribution, ρ1 = 0, 0.25, 0.5, 0.7, 0.9, and L = 1000
(The boxed ÂRL0 values satisfy |ÂRL0 − L| > 100.)

Method 1 Method 2 True optimal solution

ρ1 δ m k ÂRL0 ÂRLδ m k ÂRL0 ÂRLδ m k ÂRLδ

0 0.25 66 1.838 995 115 67 1.832 114
0.5 26 2.226 981 41 28 2.203 42
0.75 14 2.457 944 22 14 2.477 22
1 9 2.612 889 14 same as for Method 1 10 2.614 14

1.5 5 2.807 755 7 5 2.911 7
2 3 2.968 593 4 4 3.022 5
4 1 3.291 234 1 2 3.448 2

0.25 0.25 88 1.706 997 161 88 1.706 997 160 87 1.713 160
0.5 36 2.097 982 61 37 2.086 987 60 36 2.103 61
0.75 20 2.326 956 32 21 2.308 960 32 22 2.305 33
1 13 2.484 911 20 13 2.484 911 20 13 2.520 21

1.5 7 2.697 795 10 7 2.697 795 10 7 2.788 11
2 4 2.878 632 6 4 2.878 632 6 5 2.948 7
4 1 3.291 237 1 1 3.289 237 1 2 3.500 2

0.5 0.25 120 1.555 994 235 120 1.555 994 235 125 1.535 235
0.5 53 1.935 991 93 54 1.927 992 92 53 1.938 93
0.75 30 2.170 969 51 30 2.170 969 50 30 2.183 51
1 19 2.346 926 32 20 2.326 930 32 21 2.334 32

1.5 9 2.612 789 16 10 2.575 814 16 11 2.616 17
2 4 2.878 568 9 6 2.746 681 9 7 2.830 10
4 1 3.291 255 1 1 3.277 249 1 3 3.296 3

0.7 0.25 159 1.408 1000 338 159 1.408 1000 338 160 1.403 337
0.5 77 1.768 995 143 77 1.768 995 143 80 1.751 143
0.75 45 2.005 981 80 46 1.995 981 80 47 1.994 80
1 29 2.183 947 51 31 2.157 948 51 29 2.205 52

1.5 13 2.484 811 26 16 2.407 851 26 17 2.447 27
2 1 3.291 302 21 8 2.647 695 14 10 2.696 16
4 1 3.291 302 2 1 3.239 276 2 4 3.177 4

0.9 0.25 227 1.208 1002 582 233 1.192 995 582 243 1.167 584
0.5 135 1.495 1006 299 142 1.468 994 298 142 1.469 299
0.75 83 1.734 987 179 91 1.689 987 178 99 1.654 181
1 52 1.943 966 120 62 1.864 969 118 63 1.870 120

1.5 1 3.291 558 103 31 2.149 894 60 33 2.172 63
2 1 3.291 558 48 14 2.429 751 31 20 2.404 37
4 1 3.291 558 2 1 3.063 382 2 9 2.767 9
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4), denoted t10. Since we can not compute the ARL analytically for ARTA data, we esti-

mate it via simulation experiments. The other parameter values used for the comparison

experiments are as follows: the ARTA(1) lag-1 autocorrelation ρ1 ∈ {0, 0.25, 0.5, 0.7, 0.9},
the shift δ ∈ {0.25, 0.5, 0.75, 1, 1.5, 2, 4}, and the desired ARL0 value L = 1000, for a total

of 35 (= 5 · 7) experimental points.

Table 2 shows results for the ARTA(1) process with the t10 marginal distribution. The

columns in Table 2 are identical to those in Table 1, except that the ÂRL0 and ÂRLδ figures

in columns 5, 6, 9, 10, and 13 are estimates instead of exact values. To obtain the estimates,

we generated 80,000 observations of the run length based on every (m, k) solution computed

by Methods 1 and 2 and rounded the resulting values to the nearest integer. The standard

errors of each ÂRL0 and ÂRLδ are around 0.05% of the reported value. See Table S1 in the

supplement (Chen and Cheng, 2008). The true optimal solutions in columns 11 and 12 are

determined through an exhaustive search procedure, with 160,000 to 640,000 observations

of the run length for each iterate (m, k), depending on the run-length variation. Common

random-number streams are used.

The results in Table 2 show that Methods 1 and 2 both work well for small δ. However,

as δ increases (especially when δ > 1), ARL0 deviates further and further from the specified

value L = 1000. In the table, we have marked with boxes all ÂRL0 values for which the

discrepancy exceeds 100. When δ is large, Methods 1 and 2 both yield small sample sizes.

Since these sample sizes are too small to apply the central limit theorem, the sample mean

is not normally distributed. As a result, even Method 2 cannot overcome the problems

posed by large values of δ.

To get around this problem, we now modify Methods 1 and 2 slightly by requiring that

the sample size m be at least 30. Under this constraint, the central limit theorem would be

more applicable. We adjust the associated value of k accordingly to satisfy the constraint

ARL0 = L under the iid normal assumption for Method 1 and the AR(1) assumption for

Method 2. Note that our lower bound on the sample size m was chosen arbitrarily. Although

“m ≥ 30” seems to work well for many distributions (e.g., a t distribution with at least 2

degrees of freedom) and is suggested by some statistics textbooks (e.g., Ross, 2004, p. 212),

the extent of normality approximation achieved by using this lower bound depends on the
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distribution shape of the quality measurement.

Table 3 lists the results for these modified Methods 1 and 2. All m values that were

less than 30 in Table 2 are raised to 30 in Table 3. The modifications occur when the lag-1

autocorrelation ρ1 is small and the shift δ is large. The resulting ÂRL0 values are very close

to L = 1000. However, modification of the sample size also increases ARLδ. Furthermore,

comparing the modified Methods 1 and 2, we see that both methods have similar results

for ρ ≤ 0.7 because the sample means are nearly independent. (With sample size 30, the

correlation between adjacent sample means equals 0.009, 0.023, 0.051, and 0.208 for ρ =

0.25, 0.5, 0.7, and 0.9, respectively.) When ρ = 0.9, the modified-Method-1 ARL0 value is

closer to L than the modified-Method-2 ARL0 value for cases with the same m values. This

is because the modified Method 2 considers the positive autocorrelations but the modified

Method 1 does not, and hence, with the same sample size, the corresponding modified-

Method-2 k value is smaller than that for the modified Method 1. However, the difference

in the ÂRL0 values is negligible. Overall, even with the restriction m ≥ 30, the modified

Method 2 still performs better than the modified Method 1.

3 Numerical Comparisons with Previous Methods

In this section, we empirically compare the modified Method 2 to the R&W and DFTC

charts. We chose the modified Method 2 instead of the modified Method 1 because it per-

forms better and because it works well for nonnormal marginal distributions. Our numerical

results show that the modified Method 2 performs better than the R&W and DFTC charts,

especially when the correlation is high.

As in Section 2.4, we use AR(1) and ARTA(1) data with the t10 marginal distribution

to compare the modified Method 2 to the R&W and DFTC charts. The values of the lag-1

autocorrelation ρ1, shift δ, and specified value L are the same as in Tables 1 and 3.

Table 4 shows the AR(1) results for ρ1 = 0, 0.25, and 0.5; Table 5, for ρ1 = 0.9, 0.95,

and 0.99. In both tables, columns 1 and 2 list the values of ρ1 and δ; columns 3 and 4, the

R&W and DFTC ARLδ; and columns 5 to 7, the modified-Method-2 values of m, ARL0,

and ARLδ. For each combination of ρ1 and δ, the lowest and best ARLδ is marked with a

15



Table 3: The modified-Method-1 and modified-Method-2 design outputs and the true opti-

mal solutions for ARTA(1) processes with t10 marginal distribution, ρ1 = 0, 0.25, 0.5, 0.7,
0.9, and L = 1000

modified Method 1 modified Method 2 true optimal solution

ρ1 δ m k ÂRL0 ÂRLδ m k ÂRL0 ÂRLδ m k ÂRLδ

0 0.25 66 1.838 995 115 67 1.832 114
0.5 30 2.170 982 42 28 2.203 42
0.75 30 2.170 982 31 same as for the 14 2.477 22
1 30 2.170 982 30 modified Method 1 10 2.614 14

1.5 30 2.170 982 30 5 2.911 7
2 30 2.170 982 30 4 3.022 5
4 30 2.170 982 30 2 3.448 2

0.25 0.25 88 1.706 997 161 88 1.706 997 160 87 1.713 160
0.5 36 2.097 982 61 37 2.086 987 60 36 2.103 61
0.75 30 2.170 979 35 30 2.170 979 35 22 2.305 33
1 30 2.170 979 31 30 2.170 979 31 13 2.520 21

1.5 30 2.170 979 30 30 2.170 979 30 7 2.788 11
2 30 2.170 979 30 30 2.170 979 30 5 2.948 7
4 30 2.170 979 30 30 2.170 979 30 2 3.500 2

0.5 0.25 120 1.555 994 235 120 1.555 994 235 125 1.535 235
0.5 53 1.935 991 93 54 1.927 992 92 53 1.938 93
0.75 30 2.170 969 51 30 2.170 969 51 30 2.183 51
1 30 2.170 969 35 30 2.170 969 35 21 2.334 32

1.5 30 2.170 969 30 30 2.170 969 30 11 2.616 17
2 30 2.170 969 30 30 2.170 969 30 7 2.830 10
4 30 2.170 969 30 30 2.170 969 30 3 3.296 3

0.7 0.25 159 1.408 1000 338 159 1.408 1000 338 160 1.403 337
0.5 77 1.768 995 143 77 1.768 995 143 80 1.751 143
0.75 45 2.005 981 80 46 1.995 981 80 47 1.994 80
1 30 2.170 952 51 31 2.157 948 51 29 2.205 52

1.5 30 2.170 952 33 30 2.170 951 32 17 2.447 27
2 30 2.170 952 30 30 2.170 951 30 10 2.696 16
4 30 2.170 952 30 30 2.170 951 30 4 3.177 4

0.9 0.25 227 1.208 1002 582 233 1.192 995 582 243 1.167 584
0.5 135 1.495 1006 299 142 1.468 994 298 142 1.469 299
0.75 83 1.734 987 179 91 1.689 987 178 99 1.654 181
1 52 1.943 966 120 62 1.864 969 118 63 1.870 120

1.5 30 2.170 915 60 31 2.149 894 60 33 2.172 63
2 30 2.170 915 38 30 2.162 892 38 20 2.404 37
4 30 2.170 915 30 30 2.162 892 30 9 2.767 9
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box. For the R&W and DFTC charts, their values of m and ARL0 do not depend on δ and

hence are listed at the top for each ρ1 value. The DFTC results are as reported in Tables

3 and 4 of Kim et al. (2007), in which the DFTC parameter K is set to 0.1σ. The R&W

sample sizes, calculated so that adjacent sample means having correlation near 0.1, are as

reported in Table 3 of Runger and Willemain (1995). The ARL0 and ARLδ values for the

R&W and modified-Method-2 charts are computed using the Markov-chain approach.

Together, Tables 4 and 5 demonstrate that the modified Method 2 often outperforms

the other two methods. The difference is most noticeable in the following two cases: (i) ρ1

and δ both small or moderate and (ii) ρ1 large. When ρ1 ≤ 0.5 (Table 4), none of the three

methods clearly dominates. The modified Method 2 works best for δ = 0.5, 0.75, 1.0, and

the combination ρ1 = 0.5, δ = 1.5. On the other hand, the DFTC chart, a tabular CuSum

chart, is better at detecting small shifts in the process mean, consistently yielding smaller

values of ARLδ when δ = 0.25. It also does better for certain parameter combinations,

such as ρ1 = 0, δ = 1.5 and ρ1 = 0, δ = 2. On the other hand, the DFTC chart loses

its advantage as δ increases. As δ approaches 4 and the modified-Method-2 sample size is

forcibly increased to 30, the R&W chart works best. When ρ1 ≥ 0.9 (Table 5), the modified

Method 2 performs better than the other two methods for almost all cases. Comparing the

R&W and DFTC charts, the DFTC chart performs better than the R&W chart for small

values of δ and worse for large values of δ. One disadvantage of the DFTC is that it yields

ARL0 values that are slightly higher than the specified value 10000.

We next consider nonnormal quality measurements. Table 6 compares the performance

of four charts—the R&W, tuned R&W, DFTC, and modified Method 2—for ARTA(1) data

with a t10 marginal distribution. We incorporate the tuned R&W chart to compensate for

two shortcomings of the unmodified R&W chart in handling data of this type. First, as

shown in Table 5, with a normally distributed quality characteristic, the sample size is often

too large when ρ1 and δ are both large. Second, with a nonnormally distributed quality

characteristic, the sample size is often too small to yield approximately iid normal sample

means, and as a result ARL0 is far from the specified value. In the tuned R&W method,

we adjust the sample sizes to bring the associated ÂRL0 values to within three standard

errors of 1000.
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Table 4: Comparisons of three charts: R&W, DFTC and modified Method 2 for AR(1)
processes with ρ1 = 0, 0.25, 0.5 and L = 10000 (The lowest ARLδ is boxed.)

Modified Method 2
ρ1 δ R&W DFTC m ARL0 ARLδ

ARL0 = 104 ÂRL0 = 9585
(m=1) (m=1)

0 0.25 6522 178 133 104 202
0.5 2822 72 45 104 65
0.75 1184 45 30 104 34
1 520 33 30 104 30

1.5 119 21 30 104 30
2 34 16 30 104 30

2.5 12 13 30 104 30
3 5.4 11 30 104 30
4 1.8 8 30 104 30

ARL0 = 10001 ÂRL0 = 10846
(m=4) (m=1)

0.25 0.25 4298 270 194 104 302
0.5 1175 111 67 104 98
0.75 367 69 35 104 50
1 134 50 30 104 33

1.5 28 32 30 104 30
2 10 24 30 104 30

2.5 5.6 19 30 104 30
3 4.3 16 30 104 30
4 4 12 30 104 30

ARL0 = 10004 ÂRL0 = 11356
(m=8) (m=1)

0.5 0.25 4211 434 296 104 475
0.5 1150 180 106 104 159
0.75 367 112 56 104 81
1 140 82 35 104 49

1.5 34 53 30 104 31
2 14 39 30 104 30

2.5 9 31 30 104 30
3 8 26 30 104 30
4 8 19 30 104 30
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Table 5: Comparisons of three charts: R&W, DFTC and modified Method 2 for AR(1)
processes with ρ1 = 0.9, 0.95, 0.99 and L = 10000 (The lowest ARLδ is boxed.)

Modified Method 2
ρ1 δ R&W DFTC m ARL0 ARLδ

ARL0 = 10019 ÂRL0 = 11668
(m=58) (m=7)

0.9 0.25 4930 1728 945 104 1754
0.5 1657 755 396 104 664
0.75 650 481 222 104 355
1 307 352 143 104 222

1.5 112 227 72 9999 110
2 69 167 40 9997 64

2.5 59 133 30 9981 41
3 58 111 30 9981 33
4 58 83 30 9981 30

ARL0 = 10029 ÂRL0 = 12032
(m=118) (m=15)

0.95 0.25 5445 2754 1362 104 2730
0.5 2058 1250 625 104 1108
0.75 893 792 364 104 610
1 461 577 236 104 387

1.5 194 377 120 9999 194
2 132 278 66 9994 113

2.5 120 223 30 9926 74
3 118 185 30 9926 51
4 118 139 30 9926 35

ARL0 = 10058 ÂRL0 = 12735
(m=596) (m=74)

0.99 0.25 6890 6735 2357 104 5957
0.5 3518 3383 1443 104 3081
0.75 1949 2240 932 104 1856
1 1240 1641 638 9999 1235

1.5 728 1065 317 9992 648
2 614 794 30 9011 381

2.5 597 636 30 9011 234
3 596 530 30 9011 162
4 596 402 30 9011 98
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Columns 1 and 2 of Table 6 list the values of ρ1 and δ; columns 3 to 5, the ARLδ

estimates for the original R&W, tuned R&W, and DFTC charts; and columns 6 to 8, the

modified-Method-2 values of m, ÂRL0, and ÂRLδ, which are identical to those in Table 3.

The standard-error estimates of ÂRL0 and ÂRLδ are listed in the supplement by Chen and

Cheng (2008). The results for each ρ1 value are displayed in a separate section of Table 6,

with the R&W, tuned R&W, and DFTC values of m and ÂRL0 listed across the top. Each

row in a section corresponds to a different ρ1, δ > 0 combination, with a box marking the

lowest associated value of ÂRLδ. For the t10 marginal distribution, we cannot apply the

central limit theorem to the unmodified R&W chart because the sample sizes 1, 4, 8, and

17 are too small. As a result, the ÂRL0 values 234, 636, 759, and 872 stray far from the

specified value L = 1000. For the five ρ1 values ρ1 = 0, 0.25, 0.5, 0.7, and 0.9, however, the

tuned R&W sample sizes are 60, 60, 70, 80, and 140, bringing the associated ÂRL0 values

997, 994, 994, 997, and 995 closer to L.

Table 6 shows that when the lag-1 autocorrelation ρ1 is high (e.g., 0.7 and 0.9), the

modified Method 2 performs better than the other methods for most δ values. When ρ1

and δ are small or moderate, the modified Method 2 performs best. When ρ1 is small or

moderate and δ is large, the modified-Method-2 sample sizes are increased to 30 (Column

6 of Table 6) to enable application of the central limit theorem. Therefore, the resulting

ARLδ increases. In this case, the DFTC chart is superior to the modified Method 2. Overall,

the original and tuned R&W charts are not appealing since the original R&W chart may

not meet the specified ARL0 value and the tuned R&W chart has the highest ARLδ for

many combinations of ρ1 and δ. We also empirically compared the modified Method 2

to the R&W and DFTC charts using ARTA(1) processes with the exponential marginal

distribution, where the values of ρ1 and δ are as in Table 6. (See the supplement by Chen

and Cheng, 2008.) Our empirical results yielded similar conclusions as those from Table 6

and hence are not presented here.
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Table 6: Comparisons of four charts: R&W, R&W with tuned sample sizes, DFTC, and

modified Method 2 for ARTA(1) processes with t10 marginal distribution, ρ1 = 0, 0.25, 0.5,
0.7, 0.9, and L = 1000 (The lowest ÂRLδ is boxed.)

Modified Method 2

ρ1 δ R&W Tuned R&W DFTC m ÂRL0 ÂRLδ

ÂRL0 = 234 ÂRL0 = 997 ÂRL0 = 999
(m=1) (m=60) (m=1)

0.25 — 115 105 66 995 115
0.5 — 61 44 30 982 42

0 0.75 — 60 28 30 982 31
1 — 60 21 30 982 30

1.5 — 60 13 30 982 30
2 — 60 10 30 982 30
4 — 60 5 30 982 30

ÂRL0 = 636 ÂRL0 = 994 ÂRL0 = 1100
(m=4) (m=60) (m=1)

0.25 — 170 154 88 997 160
0.5 — 69 66 37 987 60

0.25 0.75 — 60 42 30 979 35
1 — 60 30 30 979 31

1.5 — 60 20 30 979 30
2 — 60 15 30 979 30
4 — 60 7 30 979 30

ÂRL0 = 759 ÂRL0 = 994 ÂRL0 = 1196
(m=8) (m=70) (m=1)

0.25 — 254 234 120 994 235
0.5 — 96 102 54 992 92

0.5 0.75 — 72 64 30 969 51
1 — 70 47 30 969 35

1.5 — 70 30 30 969 30
2 — 70 22 30 969 30
4 — 70 11 30 969 30

ÂRL0 = 872 ÂRL0 = 997 ÂRL0 = 1184
(m=17) (m=80) (m=3)

0.25 — 374 347 159 1000 338
0.5 — 144 160 77 995 143

0.7 0.75 — 92 103 46 981 80
1 — 82 75 31 948 51

1.5 — 80 49 30 951 32
2 — 80 36 30 951 30
4 — 80 18 30 951 30

ÂRL0 = 970 ÂRL0 = 995 ÂRL0 = 1292
(m=58) (m=140) (m=9)

0.25 679 604 696 233 995 582
0.5 348 298 361 142 994 298

0.9 0.75 190 190 236 91 987 178
1 119 154 173 62 969 118

1.5 69 141 113 31 894 60
2 59 140 84 30 892 38
4 58 140 43 30 892 30
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4 Summary, Conclusions, and Future Research

This paper presents two methods for designing X charts under the assumption that

the quality characteristic follows an autocorrelated process with an unknown marginal dis-

tribution shape and a known covariance structure. The design task is to determine the

sample size m and the number k of standard deviations away from the center line such that

the out-of-control ARL is minimized while the in-control ARL is maintained at a specified

value. Method 1 models the sample means as iid normal random variables and Method 2

models them as an AR(1) process. To increase the applicability of the central limit theorem

to nonnormal marginal distributions, we have modified Methods 1 and 2 so that the sample

size is at least 30.

In our numerical results, we first determined that the modified Method 2 performs

better than the modified Method 1. We then compared the modified Method 2 to R&W

and DFTC charts. The R&W chart performed best under three conditions: the marginal

distribution was close to normal, the autocorrelation was small to moderate, and the shift

was large. The DFTC chart performed best under two conditions: the correlation was small

to moderate and the shift was small or large. In all other cases, the modified Method 2

performed best.

One direction of future research is to design a procedure for the X chart when the data

properties are unknown but can be estimated from a set of Phase-I in-control data. In

our work, we have considered data with an unknown marginal distribution but a known

covariance structure. However, in some cases both the marginal distribution and covariance

structure are unknown. In this case, the procedure would use the Phase-I data to estimate

the data properties, e.g., σ
X

, or the entire marginal distribution. The issue is to determine

the amount of performance degradation (compared to the current work) as a function of

the amount of Phase-I data.

Acknowledgements

This research was conducted with the support of the National Science Council in Taiwan

under grant NSC 93-2213-E-033-023. We thank Bruce Schmeiser and David Goldsman

22



for their helpful discussions. We also thank two anonymous referees for their insightful

suggestions.

References

Boyles, R.A. (2000). Phase I analysis for autocorrelated processes. Journal of Quality

Technology 32, 395–409.

Cario, M.C., Nelson, B.L. (1996). Autoregressive to anything: Time-series input processes

for simulation. Operations Research Letters 19, 51–58.

Cario, M.C., Nelson, B.L. (1998). Numerical methods for fitting and simulating

autoregressive-to-anything processes. INFORMS Journal on Computing 10, 72–81.

Chen, H. (2001). Initialization for NORTA: Generation of random vectors with specified

marginals and correlations. INFORMS Journal on Computing 13, 312–331.

Chen, H., Cheng, Y. (2008). Supplement to “Designing X Charts for Known Autocorrela-

tions and Unknown Marginal Distribution”. Technical Report, Department of Industrial

and Systems Engineering, Chung-Yuan University, Taiwan. (Available online via

http://140.135.139.141/huifen/index1.htm .)

English, J.R., Case, K.E. (1994). Statistical process control in continuous flow processes—

ramp disturbance. IIE Transactions 26, p. 22–28.

Faltin, F.W., Mastrangelo, C.M., Runger, G.C., Ryan, T.P. (1997). Considerations in the

monitoring of autocorrelated and independent data. Journal of Quality Technology 29,

131–133.

Ghosh, S., Henderson, S.G. (2003). Behavior of NORTA method for correlated random

vector generation as the dimension increases. ACM TOMACS, 13, 276–294.

Hahn, G.J. (1989). Statistics-aided manufacturing: A look into the future. American

Statistician 43, 74–79.

Jiang, W., Tsui, K.-L., Woodall, W.H. (2000). A new SPC monitoring method: The ARMA

chart. Technometrics 42, 399–410.

Kang, K., Schmeiser, B.W. (1987). Properties of batch means from stationary ARMA time

series. Operations Research Letters 6, 19–24.

Kim, S.-H., Alexopoulos, C., Goldsman, D., Tsui, K.-L. (2006). A new model-free CuSum

procedure for autocorrelated processes. Technical Report, School of Industrial & Systems

23



Engineering, Georgia Institute of Technology, GA, USA.

Kim, S.-H., Alexopoulos, C., Tsui, K.-L., Wilson, J.R. (2007). A distribution-free tabular

CuSum chart for autocorrelated data. IIE Transactions 39, 317–330.

Koo, T.-Y., Case, K.E. (1990). Economic design of X-bar control charts for use in mon-

itoring continuous flow processes. International Journal of Production Research 28,

2001–2011.

Lucas, J.M., Saccucci, M.S. (1990). Exponentially weighted moving average control schemes:

Properties and enhancements. Technometrics 32, 1–12.

Montgomery, D.C. (2005). Introduction to Statistical Quality Control, 5th edn., New York:

Wiley.

Pandit, S.M., Wu, S.M. (1983). Time Series and System Analysis with Applications, New

York: Wiley.

Ross, S.M. (2004). Introduction to Probability and Statistics for Engineers and Scientists,

3rd edn., Elsevier Academic Press.

Runger, G.C., Willemain, T.R. (1995). Model-based and model-free control of autocorre-

lated processes. Journal of Quality Technology 27, 283–292.

Tucker, W.T., Faltin, F.W., Vander Wiel, S.A. (1993). Algorithmic statistical process

control: An elaboration. Technometrics 35, 363–375.

Wardell, D.G., Moskowitz, H., Plante, R.D. (1994). Run-length distributions of special-

cause control charts for correlated processes. Technometrics 36, 3–17.

24


