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ABSTRACT:

We consider the economic-statistical design of X-control charts for nonnormal quality mea-
surements. Specifically, we assume that the sample average X has a Johnson distribution. The John-
son distribution is general in that it can be made to fit all possible values of skewness and kurtosis.
The cost model, proposed by McWilliams, is used to determine the optimal design parameters—
the sample size, time between successive samples, and number of standard deviations away from
the center line. This work is a generalization of Rahim’s models; for example, it combines mainly
three of Rahim’s models: (i) economic design of X chart under non-normality (Rahim 1985), (ii)
economic design of X chart under Weibull shock models (Banerjee and Rahim 1988), and (iii)
economic-statistical design of X charts with non-Markovian in-control times (Al-Oraini and Rahim

2003).

Our sensitivity analysis shows that nonnormality has a significant effect on the design parameters
and hence should not be ignored. Sensitivity to the Weibull shape and the process-mean shift are
also considered. We also compare the economic-statistical and fully economic designs for nonnormal
data.

Keywords: Economic-Statistical Design; Johnson Distribution; Nonnormality; X Control Chart.

1 Introduction

We consider the economic-statistical design of X control charts, assuming that the
control chart point X (i.e., the sample average of n quality measurements) has a Johnson
distribution (Johnson 1949) and that the time until the process is out of control has a
Weibull distribution. In designing a control chart, three parameters—the sample size n,
time h between successive samples, and the number k of standard deviations away from
the center line—must be determined. In economic-statistical design, these parameters are
chosen so that the expected cost per hour is minimized under constraints, e.g., minimum

allowable values of the Type I error probability (probability that X falls outside control



limits while the process is in control) and the Type II error probability (probability that X
falls within control limits while the process out of control).

The X control chart is used to control the process mean at the desired level pg. The
purpose is to maintain the required production quality. During the production process, the
product quality characteristic X may vary because of assignable causes, resulting in a shift of
the process mean to an inadequate level. Rahim (1985) lists some typical assignable causes,
including defective raw materials, faulty setup, untrained operators, and the cumulative
effects of heat, vibration, shock, etc. In this research, we assume that the process of interest
has a single assignable cause. Studies of economic models assuming multiple assignable
causes can be found in Duncan (1971) and Tagaras and Lee (1988). For surveys of the
literature of X control charts, see Ho and Case (1994), Montgomery (1980), and Vance
(1983).

The three design parameters n, h, and k are chosen so that the expected hourly cost
(Equation 5) is minimized under constraints on the Type I and II error probabilities, or
equivalently, on the average run length (ARL). The expected hourly cost equals the ratio of
the expected cycle cost to the expected cycle time, where the production cycle is illustrated
in Figure 1. The cost model used here is based on the model proposed by McWilliams
(1989), which is an extension of the work of Lorenzen and Vance (1986). Woodall (1985,
1986) points out that a fully economic design ignores the statistical performance of control
charts. On one hand, this may result in too many defectives. On the other hand, it may
cause too many false alarms. If there are too many such false alarms, the control chart may
be ignored in practice. Saniga (1989) first proposes the economic-statistical design. Al-
Oraini and Rahim (2003) show that the economic-statistical design significantly improves
the statistical performance at only a slight cost increase. Also, there is the statistical design,
which chooses only the values of n and k under the desired Type I and II error probability
constraints. However, n and k may not be chosen optimally to reduce the expected hourly
cost.

Most literature assumes that the sample average X and the process in-control time
follow normal and exponential distributions, respectively. (See, for example, Duncan 1956,
and Lorenzen and Vance 1986.) A large sample size would result in an approximately
normal distribution for X. In practice, however, the sample size for the X control chart is

usually small (e.g., Duncan, 1956, suggests 2 < n < 10 for A > 2) and therefore X is not



necessarily normally distributed.

Some nonnormal literature exists. Lashkari and Rahim (1982) consider the CUSUM
chart, and Nagendra and Rai (1971) and Rahim (1985) consider the economic design of X
charts. All of this work models the probability density function of the quality measurement
X by the first four terms of the Edgeworth series, where the four terms are functions of
the first four moments. The normal distribution is a special case of Edgeworth series. Burr
(1967), Yourstone and Zimmer (1992) and Chou et al. (2000) model the distribution of
X as a Burr distribution (Burr 1942) using the moment method (see also Section 2). The
advantage of the Burr distribution is that it has a closed-form cdf (cumulative distribution
function), which simplifies computations of the Type I and II error probabilities (Equations 2
and 3). The disadvantage, however, is that because the Burr distribution is right skewed,
unlike the Edgeworth series, it strictly limits X to a nonnormal distribution.

This research considers the economic-statistical design to minimize the cost of control
charts while keeping reasonable Type I and II error probabilities. We assume that the
sample average X has a Johnson distribution (see the Appendix). We choose the Johnson
distribution because as shown in Figure 2, the Johnson family (including normal, lognormal,
bounded, and unbounded types) covers the entire feasible part of the (31, 32) plane, where
(1 stands for the squared skewness and 2 the kurtosis. All lognormal (31, 32) fall on the
lognormal curve in the figure. The region above the lognormal curve consists of bounded
Johnson distributions, denoted by Sg. The region below, which consists of unbounded
Johnson distributions, we denote Sy. For each point (31, 2), there is one corresponding
Johnson distribution (Johnson et al. 1994, p. 36). All (81, B2) for the Edgeworth series fall
on a curve below the lognormal curve; all (81, 32) for the Burr distribution form a region
that is above the Weibull curve in the Pearson (v/f3;, 32) plane (Johnson et al., 1994, pages
29 and 687). We choose the Johnson family for a wide range of the skewness and kurtosis.

In this work, we use the Johnson family to model the distribution of X, rather than X,
for better computational efficiency. If we were to model the distribution of X as Johnson,
the distribution of X could possibly not be Johnson. One disadvantage of this approach is
that it complicates the evaluation of the Type I and Type II error probabilities, which are
n dimensional integrals and need to be computed numerically or estimated by Monte Carlo
simulation. As a result, finding the optimal values of n, h, and k becomes more complex.

Although not reported here, our simulation results show that the optimal values of n, h,



and k do not vary much in the derivation of the Johnson model for X.

We also assume that the in-control time (i.e., the elapsed time before the assignable
cause occurs) follows a Weibull distribution. Duncan (1956) and Lorenzen and Vance
(1986) assume that the in-control time distribution is exponential. However, the mem-
oryless property of the exponential distribution may not be applicable in practice. The
Weibull distribution has the advantages that it offers many distribution shapes (including
exponential), a nonconstant hazard rate function, and a closed-form cdf. Literature on the
control chart applications of the Weibull distribution includes Banerjee and Rahim (1988),
McWilliams (1989), and Zhang and Berardi (1997).

The rest of this paper is organized as follows. In Section 2, we discuss the cost function
and constraints under the Johnson and Weibull distribution assumptions. In Section 3, we
perform sensitivity analysis to study the effects of nonnormality, Weibull shape, and shift
on the optimal parameters. Comparisons of the fully economic and economic-statistical

designs are also discussed. In Section 4, we give our conclusions.

2 The Cost Model

The cost model used here is identical to the McWilliams (1989) model except that the
distribution of the sample average X is assumed to have a Johnson distribution (see the
Appendix). The production process is assumed to start in an in-control state, where the
quality measurement X has mean u = ug, standard deviation o, skewness as and kurtosis
ay. (Notice that as = E[(X — p)/0]? and ay = E[(X — u)/o]* ). When the assignable
cause occurs, the process mean p shifts from pg to pg + Ao, A € R, but the standard
deviation, skewness, and kurtosis remain unchanged. The value of A is assumed known so
that the optimal values of n, h, and k can be computed. The in-control time V' is assumed
to have a Weibull distribution with shape parameter 6 and scale parameter A\. The Weibull
cdf is F(v) = 1 — exp{—(\v)?} and its mean is A™'T'(1 + §~1). When 6 = 1, the Weibull
distribution is an exponential distribution. In order to detect a shift in the process mean, a
sample of n independent quality characteristic measurements Xy, ..., X,, is taken at intervals
of h hours. If the sample average X falls outside the control limits g+ ko /\/n for a positive
constant k, then an out-of-control signal is recorded in the control chart. In this case, the

quality-control engineers try to determine whether there is an assignable cause. If such
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Figure 1: Plot of a production cycle (from Lorenzen and Vance, 1986)

an assignable cause is identified, appropriate action is taken to the production process and
restore the in-control state.

For a given value of the sample size n, the distribution of X can be modeled as a
Johnson distribution using the first four moments of X. Since X is the sample average of

n independent observations of X, the first four moments of X are

014—3

EX)=p V@) =c'/n,  agg=as/vn,  ayx= +3,

n

where a3 ¢ and o, ¢ denote the skewness and kurtosis of X. Given n, we can fit a Johnson
distribution to the four moments of X (see the Appendix). Notice that o, a3, and ay are
assumed known to the quality engineer. In practice these values can be estimated, e.g.,
via the moment method, using many realizations of X. Though the mean g is unknown,
it is assumed that p equals a known target mean pg when the process is in control and
equals pg + Ao otherwise. To compute the Type I and II error probabilities @ and § in
Equations (2) and (3), we can fit a Johnson distribution to X based on its conditional
mean value (i.e., uo for a and pg + Ao for ) and then compute the Johnson cumulative
probability.

The X control chart is designed to detect whether the process is out of control. The
design parameters n, h, and k are chosen to minimize the expected hourly cost, i.e.,
E(C)/E(T), where C is the cycle cost, T is the cycle time, and E(-) is the mean func-
tion. A quality cycle is defined as the time until the next in-control period. The sequence
of quality cycles follows a renewal reward process because the in-control times in each cycle
are identically and independently distributed. Therefore, the expected hourly cost E(C/T)
equals the ratio of the expected cycle cost to the expected cycle time (Ross 1970, page 53),

i.e., E(C)/E(T). Computations of the expected cycle time and cycle cost are described as



follows.

The expected cycle time consists of four parts as shown in Figure 1: (i) the expected time
elapsed before the assignable cause occurs, (ii) the expected time between the occurrence of
the assignable cause and the next out-of-control signal, (iii) the expected time T} required
to identify the assignable cause, and (iv) the expected time T5 to repair the process. As

described in McWilliams (1989), the expected cycle time is

B(T) = [AT'T(1+607") + (1 61)Tps/ARLo|
(s + ARL)A = AT +67Y) +nE] + Ty + T

= (s+ARL)h+ (1 — 6)Tos/ARLg + nE + T) + T, (1)

where ;1 equals 1 if production continues during the assignable-cause search and 0 otherwise,
Ty is the expected assignable-cause search time for a false alarm, ARLy and ARL; are the
average run lengths when the process is in control and out of control, E is the expected
sampling time for one observation, and s = > 72 i P{ih <V < (i + 1)h} = >3, e~ (Nih)°
is the expected number of samples taken during the in-control state.

For independent observations, both ARLy and ARL; are related to Type I and II error
probabilities as follows. The average run length ARLg is equal to 1/«, where « is the Type

I error probability defined as

a = P{X <p—ka/vyn or X >po+ko/vn|p=po} (2)

= 1 +FM0(:“0 —ko/vn) - FMO(NO + ko /v/n),

and F),(-) is the Johnson cdf with mean p, standard deviation o//n, skewness a3 g, and
kurtosis oy g. (Computation of the Johnson cdf is described in the Appendix.) Similarly,
ARL; =1/(1 — f3), where

B8 = P{uo—ko/Vn<X <pog+ko/vn|p=p+Ac} (3)
= Fuotac(po +ko/v/n) = Fuyrne(po — ko /v/n)

is the Type II error probability. If the sample average X has a normal distribution (i.e.,

az x = 0 and ay ¢ = 3), then a = 2&(—k) and 8 = ®(k — Ay/n) — ®(—k — Ay/n), where



® is the standard normal cdf.

There are costs associated with each of the four parts of the cycle time. The cost of the
entire cycle includes the cost of nonconformities (while in control and out of control), false
alarms, and repair. Let Cy and Cy (> Cp) denote the hourly costs due to nonconformities
produced while the process is in and out of control, respectively. Furthermore, let do be 1
if production continues during the repair process, and 0, otherwise. The expected cost per
cycle arising from nonconformities is then CoA™'T'(1 + 0~1) + Cy[(s + ARL)h — A7IT(1 +
01 +nE+5, Ty +62Ts]. If we denote the cost per false alarm by cf, then the total expected
cost for false alarms is cys/ARLg. Let a be the fixed cost per sample and b be the variable
cost per unit sampled. The cost per sample is then a 4 bn. Therefore, the expected cost for
sampling and charting the result is (a + bn)h ™' [(s + ARLy)h + nE + 61Ty + 6215, Let W
be the cost for locating and repairing the assignable cause. The expected cost per cycle is

therefore

E(C) = CoA ‘146740 [(s +ARL)A = AT'T(A+ 6071 +nE + 6Ty + 52T2}

+cps/ARLg + (a + bn)h ™" [(s + ARL)h +nE + 6;Th + 52T2} + W (4)

In economic-statistical design, the X-chart design parameters n, h, and k are chosen
to minimize the expected cost per hour for a quality cycle under constraints on the Type
I and II error probabilities & and (3. Let p; and py denote the upper bounds for o and (3,
respectively. The design parameters n, h, and k are determined by solving the optimization

problem:

min  E(C)/E(T) (5)
s.t. a < pi,

ﬁ<p27

nef{23,..}, h>0 k>0

The objective function E(C)/E(T'), however, is not monotonic with respect to the design
parameters n, h, and k. For the sensitivity analysis in Section 3, we use the grid search
method to compute the optimal values n*, h*, and k* of n, h, and k, respectively. The

procedure for computing n*, h*, and k&* can be found in Nagendra and Rai (1971) and von



Collani (1986, 1988).

3 Sensitivity Analysis

Here we perform sensitivity analysis to investigate how nonnormality, Weibull shape,
and shift affect the optimal values of the design parameters—that is, the sample size n*,
sampling interval h*, and factor k*. We also compare the economic-statistical design to the
fully economic design.

Table 1 shows the effects of nonnormality on the optimal design values n*, h*, and k*.
Specifically, we study how n*, h*, and k* change as the skewness a3 and kurtosis a4 of the
quality measurement X vary. There are 55 design points, corresponding to two values of the
bound parameters (p; = 1, .01 and p; = p2), as shown in column 1 of the table, three values
of the shift parameter (A = .5, 1, 2), as shown in column 2, and 11 values of the population
skewness, kurtosis combinations as shown in column 3. We test at three skewness values
(g = 0, 2, 5) and three kurtosis values (g = 6, 36, 100). Excluding the invalid point (5,
6), these values yield 8 points. In addition, we include the point (0, 3), which corresponds
to the normal distribution, and the points (2, 10.9) and (5, 68.3), which represent lognormal
distribution shapes. Figure 2 illustrates these 11 combinations of skewness and kurtosis in
the (81, 2) plane. Furthermore, only positive skewness is considered because the control
limits are symmetric. Notice that when p; = ps = .01, some distribution shapes may have
no feasible solutions for A = .5, and hence, only A = 1 and 2 are considered.

The other parameters are set as follows. The Weibull shape parameter 6 is set to

.5 and the scale parameter A is chosen so that the mean in-control time E(V) = 100.
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Figure 3: Plots of a and (8 as functions of the kurtosis a4 for n =26, k = 2.74, A = 1, and
ag = 0, 2, 5 (the other cost parameters are the same as in Table 1)

The nonconformity costs Cy and C7 are made proportional to the defect rate, defined as
P{|X — po| > 3.50}. Here, we set Cp = 1000 P{|X — po| > 3.50|pn = po} and hence,
C1 = 1000 P{|X — po| > 3.50|p = po + Ac}. The other cost parameters are given by
0 =0=1,FE=01T=0T =2 17, =0,c¢c, =50, a =.5,b=.1 and W = 25.
Arbitrarily we set g = 0 and o = 1 for simplicity because pg and o affect neither the mean
hourly cost E(C')/E(T") nor the Type I and II error probabilities o and .

Table 1 lists n*, h*, k*, the Johnson distribution type of X (given in the “type” column),
Cy, C1, a, B, and the expected hourly cost. We see that nonnormality affects the values of
n*, h*, and k*. The more (a3, ay) deviates from (0, 3), the more n*, h*, and k* deviate from
the normal values, which are, for examples, (25, 10.63, 2.67) for p; = p2 = .01 and A =1,
and (8, 1.95, 3.33) for A = 2. For the sensitivity to the skewness, usually k* increases
and n* and h* decrease as the skewness a3 goes up. Furthermore, the optimal parameters
are sensitive to kurtosis ay. When the skewness a3 is small and p;=py = .01, n* and k*
increase as a4 increases. This is because in an economic-statistical design with low p; and
po values, the Type I and II error probabilities «@ and [ strongly affect the optimal design
parameters n* and k*. Figure 3 shows that for a small skewness, a and 3 increase as the
kurtosis increases, and hence, n* and k* vary monotonically with respect to a4. However,
when the skewness ag is large (e.g., 5), a, and hence n* and k*, may not vary monotonically
with respect to the kurtosis a4. Furthermore, the expected hourly cost increases with ay
when ag is small and decreases otherwise.

The Johnson distribution type of X depends on the population skewness and kurtosis.



Table 1: The sensitivity analysis of non-normality on the optimal values n*, h*, and k* with
A=1,2 E(V)=100, 0 =.5 p; =1,.01, and p; = py

p1 | A | (as,a4) | n* h* k*  type Co Ch e Jé; E(C)/E(T)
(0, 3) 35 3949 216 Sn 465 1.382 .0308 .2124 1.026
(0, 6) 38 27.85 222 Su 5.951 7.432 0273 .1926 6.646
(0, 36) 36 34.28 2.15 Su 11.304 12.475 0375 182 11.932
(0,100) | 32 39.36 204 Sy 11.995 12,995 | .0485 .1787 12.578
(2, 6) 45 553 226 Sp 0 30.247 .0231  .1346 3.04
b5 1(2,109) | 43 12552 224 Sy 10.182 16.365 .0255  .1466 11.518
(2, 36) 41 1881 221 Su 11.089 14.164 .032 1487 12.058
(2, 100) 36 2455 212 Su 11.922 13.899 .0422 1588 12.714
(5, 36) 42 15.04 2.09 Sg 18.392 23.368 .0356  .1047 19.59
(5,68.3) | 41 14.43 2.12 Su 13.288 18.511 .0364 1179 14.519
(5, 100) 40 1621 213 Sy 11.88 16.093 .0385 .1238 12.995
(0, 3) 16 825 277 Sy 465 6.213 .0056  .1093 1.397
(0, 6) 16 7.52 2.8 Su 5.951 12.904 .0066 .1124 6.974
(0, 36) 17 939 295 Su 11.304 16.518 .0108  .1025 12.23
(0, 100) 16 1047 294 Sy 11.995 16.406 .0152 .1061 12.866
(2, 6) 17 282 274 Sp 0 55.288 | .0083 .0668 3.157
1 1] (2,109 | 17 516 277 Sy 10.182 26.781 .0088 .0727 11.762
(2, 36) 17 7.06 2.9 Su 11.089  20.279 | .0114 .0887 12.288
(2, 100) 17 8.7 298 Sy 11.922 18.387 .0142  .0902 12.953
(5, 36) 19 687 298 Sp 18.392 30.111 0125 .0213 19.731
(5, 68.3) | 17 6.2 284 Sy 13.288  26.493 | .0149 .0569 14.725
(5,100) | 17 6.75 2.9 Su 11.88 22.87 0149  .0682 13.197
(0, 3) 6 1.75 323 Sn .465 66.807 .0012  .0476 3.32
(0, 6) 6 2 339 Sy 5.951 57.673 | .0023 .0632 8.408
(0, 36) 7 2.7 387 Sy 11.304  44.874 | .0048  .062 13.258
(0, 100) 7 3.06 399 Sy 11.995 39.535 .0065  .0646 13.76
(2, 6) 6 1.46 343 S 0 107.933 | .0029 .0233 4.047
2 |(2,109) | 7 1.93 367 Sy 10.182  75.767 | .0029  .025 13.085
(2, 36) 7 243  3.85 Su 11.089 53.386 .0048  .0503 13.33
(2, 100) 7 2.84 398 Sy 11.922 44.15 .0065 .0583 13.853
(5, 36) 8 2.8 449 Ssp 18.392 53.75 .0033  .0017 20.362
(5, 68.3) 7 242 3.92 Su 13.288 60.332 .0065  .028 15.696
(5, 100) 7 254 39 Sy 11.88 53.662 | .0067 .0403 14.128
(0, 3) 25 10.63 2.67 Sy .0076  .0099 1.453
(0, 6) 26 9.73 274 Sy .0072  .0098 7.036
(0, 36) 29 12.04 288 Sy .0099  .0099 12.293
(0,100) | 33 138 3.12 Sy .0098  .0099 12.943
(2, 6) 22 323 271 S .0082 .0096 3.226
11(2,109) |23 599 275 Sy .0085  .0098 11.811
(2, 36) 27 863 294 Sy .0089  .0098 12.348
(2, 100) 31 11.01 3.2 Su .0099  .0099 13.03
(5, 36) 22 707 316 Sm .0088  .0092 19.742
(5,68.3) | 25 698 313 Sy same as for p;=1 | .0092 .0098 14.769
.01 (5, 100) 27 792 314 Sy .0099 .0098 13.259
(0, 3) 8 1.95 333 Sy .0009  .0099 3.373
(0, 6) 8 228 3.25 Su .0027  .0099 8.452
(0, 36) 10 3.11 3.68 Su .005  .0099 13.314
(0,100) [ 11 359 3.87 Sy .0063  .0099 13.828
(2, 6) 7 149 364 Sp .0015 .0093 4.049
2 | (2,10.9) 7 2 344 Sy .0042  .0097 13.096
(2, 36) 9 269 371 Sy .005  .0099 13.368
(2, 100) 10 326 379 Su .0069 .0099 13.911
(5, 36) 8 2.8 449 Sp .0033  .0017 20.362
(5,683) | 8 252 396 Su .006  .0098 15.706
(5, 100) 9 2.75 4 Su .0059 .0098 14.158

10



It is well known that the sample average of the normal population is also distributed as
normal. Intuitively if the population (asg, ay) falls in the bounded (or unbounded) area in
the (81, B2) plane, the Johnson type of X is Sp (or Sy). However, if the population (as,
ay) falls on the lognormal line, X is distributed as Sy, rather than lognormal.

The central limit theorem has little effect on the optimal values of n*, A*, and k*. Even
when n* is large, the values of Ah* and k* for nonnormal distributions deviate from the
normal values. This is because the nonnormality affects Cy and C;. The central limit
theorem brings the nonnormal « and G close to the normal values. However, the nonnormal
Cy and (' differ significantly from the normal Cy and C;. Hence, the nonnormal n*, h*,
and k* differ from the normal values even when n* is large.

Next we study the sensitivity of the Weibull shape parameter 8. Tables 2 and 3 list the
optimal values n*, h*, and k* for § = .5, .75, 1, 2, E(V) = 10, 100, A = 1, 2, p; = .05,
1, and po = p1. Four population shapes are shown in column 1 of both tables: (0, 36), (5,
36), (2, 10.9) and (0, 3). Column 2 shows two values of p;, p1 = .05 and p; = 1. However,
for (as,ay) = (5, 36), the results for p; = .05 are not displayed because they are identical
to the results for p; = 1 (see Table 4). The values of the remaining cost parameters are as
given in Table 1. Both tables show that as 6 increases (while E(V') remains constant, but
A decreases), h* increases slightly because Var(V') gets smaller. (However, the values of n*
and k* are insensitive to changes in 6.) The sensitivity is more obvious for # < 1 than § > 1.
A large decrease in E(V) results in a modest decrease in h*. We expect a decrease in h*
because when the assignable cause occurs more frequently, the sampling frequency should
increase as well. However, the sampling frequency may not increase with the same speed
because otherwise, E(T") would be much shorter and would result in a larger hourly cost.

Table 4 compares the fully economic and economic-statistical designs. There are in total
60 design points, corresponding to the parameter values (ag, ay) € {(0,3),(0,36), (5, 36),
(2,10.9)}, A € {.5,1,2}, p1 € {.05,.1,.15,.3,1} and p2 = p;. The other cost parameters
are as in Table 1. When p; = ps = 1 (the top line in each row of the table), the economic-
statistical design is called the fully economic design because there are no limits on the Type
I and Type II error probabilities. Table 4 shows that the economic-statistical design is
preferable because the Type I and II error probabilities can be kept as low as .05 at only
a slight increase in the mean hourly cost. By contrast, the fully economic design has the

lowest cost but the Type II error probability varies as high as .19. If we require that « and 3
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Table 2: The effects of the Weibull shape 6 on n*, h*, and k* with § = .5, .75, 1, 2, E(V)
=10, 100, A =1, 2, p; = .05, 1, p2 = p1, and (a3, a4) € {(0, 36), (5,36)}

A=1 A=2
(asou) | m | BOV) | 0 [7 0 & BO)/B() & E(C)/E(T)
5 | 17 939 295 12.23 387 13.258
75 | 17 10.01 291 12.207 2.83 3.84 13.227
100 1 18 1047 294 12.199 2.86 3.84 13.22
18 10.66 2.93 12.195 2.88 3.83 13.217
1 .5 14 5.32 2.68 15.295 1.03 3.83 21.696
75 | 14 5.63 2.62 15.244 1.1 3.79 21.573
10 1 14 5.89 2.58 15.214 1.13  3.77 21.531

3
*

>
*

N
N

(0, 36) 2 14 6.57 249 15.178 1.15 3.76 21.51
b5 | 20 1038  2.86 12.24 2.78 4.05 13.26
75 | 20 11 2.86 12.213 291 4.02 13.228
100 1 20 11.28 2.86 12.204 2.95 4.01 13.22
2 20 11.48 2.86 12.199 296 4.01 13.218
.05 S| 17 6.09 251 15.321 1.04 3.73 21.7

111 3.73 21.574
1.14 3.73 21.531
1.15 3.73 21.51
2.8 449 20.362
293 4.48 20.327
297 448 20.319

751 17 6.31 0 251 15.263
10 1 17 6.53 251 15.229
17 713 251 15.186
S 19 687 298 19.731
75 1 19 7.3 2.96 19.694
100 1 19 749 295 19.682

(5, 36) 2 19 758  2.95 19.677 2.99 448 20.316
1 5 | 16 2.9 2.7 24.431 1.05 4.19 29.05

751160 311 2.67 24.315 112 4.19 28.915

10 1 16 3.26 265 24.26 1.15 4.8 28.869

~ =3 ~3 ~3| 00 00 00 0O|~I ~I ~I ~J| 00 00 00 0Ol ~I ~I I I ~I ~I -

16 3.45 263 24.214 1.17  4.18 28.845

are both under .05, the mean hourly cost increases by less than 2%. However, on the whole,
the economic-statistical design is superior. When the shift A is large, the fully economic
design has a low « and 3, and in several cases, the fully economic and economic-statistical
designs are identical. The sample size n* decreases as the bounds p; and ps become larger,
but decreases slowly when p; and py are greater than .15.

Table 4 also shows the effect of the shift A on the optimal values n*, h*, and k*. When
A increases, the sample size n* decreases, the time h* between samples decreases, and the
factor k* increases. If A is large, it is easier to detect that the process is out of control
and hence, the sample size n need not be large. Usually when n decreases, h decreases as
well. For a smaller sample, the sampling cost is less, and hence more samples are allowed.
Furthermore, since the Type II error probability § is reduced by a large A, the factor k

increases, reducing « while maintaining an allowable value of 3.
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Table 3: The effects of the Weibull shape 6 on n*, h*, and k* with § = .5, .75, 1, 2, E(V)
=10, 100, A =1, 2, p; = .05, 1, p2 = p1, and (a3, a4) € {(2,10.9),(0,3)}

A=1 A =2

*

(azou) | 1 | E(V) | 0 [07 ”° & BO/ED) | n° & BB
5 | 17 516 277  1L762 7 193 367  13.08

100 75 | 18 5.56 2.8 11.725 7 2.02 3.65 13.046

1 18 5.67 2.79 11.715 7 2.04 3.64 13.038

18 5.74 2.78 11.711 7 2.05 3.64 13.036

1 .5 16 2.08 2.68 17.494 7 72 3.64 26.842

10 | 75|16 223 264  17.369 776 361 26.682

1 16 2.32 2.62 17.316 7 78 3.6 26.633

(2, 10.9) 2 16 2.42 2.59 17.279 7 .79 3.6 26.612

.5 18 539 273 11.765
100 751 18 5.67 2.73 11.726
1 18 577 273 11.716
2 18 582 2.73 11.711
.05 5 17 2.18 2.62 17.506 same as for p1=1
10 75| 17 232 2.62 17.375
1 17 2.4 2.62 17.319

17 2.48 2.62 17.28
S| 16 825 277 1.397 6 1.75 3.23 3.32
100 .75 | 16 8.74 2.75 1.375 6 1.83 3.21 3.286
1 16 8.98 2.73 1.368 6 1.84 3.21 3.28
2 17 9.37 2.76 1.364 6 1.85 3.21 3.278
1 5 14 4.35 2.62 4.614 5 .62 3.07 17.097
10 75 | 14 4.6 2.58 4.561 6 .69 3.18 16.957
1 14 4.82 2.55 4.533 6 71 3.17 16.914
(0,3) 2 15 5.39 2.53 4.502 6 72 3.16 16.897
5 19 9.27 2.71 1.408
100 .75 | 19 9.81 2.71 1.382
1 19 10.05 2.71 1.374 same as for p1=1
2 19 10.2 2.71 1.37
.05 S| 17 5.09 247 4.645 6 .66 3.2 17.099
10 75 | 17 5.31 2.47 4.583 6 .69 3.18 16.957
1 17 5.51 2.47 4.549 6 71 3.17 16.914
2 17 5.94 2.47 4.51 6 72 3.16 16.897

4 Conclusions

We consider the economic-statistical design of X control charts under the assumption
that the sample average X has a Johnson distribution and the time V until the assignable
cause occurs has a Weibull distribution. We choose the Johnson probability model because
we can fit it to any desired first four moments. The control-chart design parameters n,
h, and k are determined so that the expected hourly cost is minimized under constraints
on the Type I and II error probabilities. We discuss the cost model, computations of the
expected hourly cost, and Johnson probability modeling. Sensitivity analysis is performed
to investigate the effects of nonnormality, Weibull shape, and shift on the optimal design

parameters n*, h*, and k*. Four results follow: (i) The values of n*, h*, and k* for nonnormal
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distributions deviate quite a bit from the values for the normal distribution. Therefore, in
cost control, nonnormality can not be ignored. (ii) The Weibull shape parameter 6 has
a small effect on n*, h*, and k*. When 60 decreases while E(V') is held constant, Var(V')
increases, and hence h* decreases (i.e., more sampling). (iii) When the shift A increases, it
is more easily detected, and hence n* and h* decrease. (iv) The economic-statistical design
is superior to the fully economic design because the Type I and II error probabilities can

be reduced to acceptable levels at only a slight increase in cost.
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Appendix: The Johnson Probability Model

The Johnson distribution family, proposed by Johnson (1949), includes three transfor-
mations of the standard normal distribution. Let Y and Z denote the Johnson and standard

normal random variables, respectively. The three transformations are:

Sp:  Z=v+0In(

A5 0sv-gsn (©

Yy —
Sv: Z=v+ 5sinh_1(—E

Yy —¢
n
Sp:  Z=v+In(
), —oo <Y <oo.

The constants & and 7 are location and scale parameters, respectively; v and § are the
shape parameters. The second transformation, Sp, provides a bounded random variable
Y'; the third transformation, Sp7, results in an unbounded Y. For lognormal distributions,
St, the range is bounded below if n > 0 and bounded above if n < 0. Furthermore, the
normal distribution, denoted as Sy, is one of the types of the Johnson distribution besides
St, Sp, and Sr. We can use the numerical routines of Hill et al. (1976) to find the
Johnson distribution having the four desired moments mean, standard deviation, skewness,
and kurtosis. To compute the Johnson cumulative probability F'(y) = P{Y < y}, we can
transform y to z using Equation (6) and then let F(y) = ®(z), where ® is the standard
normal cdf. For example, if Y is a lognormal distribution, F'(y) = ®[y+ dIn((y — &)/n)].

14



References

Al-Oraini, H.A., Rahim, M.A., 2003. Economic Statistical Design of X Control Charts for
Systems with gamma(A, 2) In-control Times. Journal of Applied Statistics 30, 397-409.

Banerjee, P.K., Rahim, M.A., 1988. Economic Design of X-Control Charts Under Weibull
Shock Models. Technometrics 30, 407-414.

Burr, LW., 1942. Cumulative Frequency Functions. Annals of Mathematical Statistics 13,
215-232.

Burr, LW., 1967. The Effects of Non-normality on Constants for X and R Charts. Industrial
Quality Control 23, 563-568.

Chou, C., Chen, C., Liu, H., 2000. Economic-Statistical Design of X Charts for Non-normal
Data by Considering Quality Loss. Journal of Applied Statistics 27, 939-951.

v. Collani, E., 1986. A Simple Procedure to Determine the Economic Design of an X
Control Chart. Journal of Quality Technology 18, 145-151.

v. Collani, E., 1988. A Unified Approach to Optimal Process Control. Metrika 35, 145-159.

Duncan, A.J., 1956. The Economic Design of X Charts Used to Maintain Current Control
of a Process. Journal of the American Statistical Association 51, 228-242.

Duncan, A.J., 1971. The Economic Design of X Charts Where There Is a Multiplicity of
Assignable Causes. Journal of the American Statistical Association 66, 107-121.

Hill, I.D., Hill, R., Holder, R.L., 1976. Algorithm AS 99. Fitting Johnson Curves by
Moments. Applied Statistics 25, 180—-189.

Ho, C., Case, K.E., 1994. Economic Design of Control Charts: A Literature Review for
1981-1991. Journal of Quality Technology 26, 39-53.

Johnson, N.L., 1949. Systems of Frequency Curves Generated by Methods of Translation.
Biometrika 36, 149-176.

Johnson, N.L., Kotz, S., Balakrishnan, N., 1994. Continuous Univariate Distributions—
Volume 1, 2nd ed. NY: John Wiley & Sons.

Lashkari, R.S., Rahim, M.A.; 1982. An economic design of cumulative sum charts to control
non-normal process means. Computer and Industrial Engineering 6, 1-18.

Lorenzen, T.J., Vance, L.C., 1986. The Economic Design of Control Charts: A Unified
Approach. Technometrics 28, 3—-10.

McWilliams, T.P., 1989. Economic Control Chart Designs and the In-control Time Distri-

15



bution: A Sensitivity Study. Journal of Quality Technology 21, 103-110.
Montgomery, D.C., 1980. The Economic Design of Control Charts: A Review and Literature
Survey. Journal of Quality Technology 12, 75-87.
Nagendra, Y., Rai, G., 1971. Optimum sample size and sampling interval for controlling
non-normal variables. Journal of the American Statistical Association 66, 637-646.
Rahim, M.A., 1985. Economic Model of X-chart under Non-normality and Measurement
Errors. Computer and Operations Research 12, 291-299.

Ross, S.M., 1970. Applied Probability Models with Optimization Applications. San Fran-
cisco: Holden-Day.

Saniga, E.M., 1989. Economic Statistical of Control-Chart Designs with an Application to
X and R Charts. Technometrics 31, 313-320.

Tagaras, G., Lee., H.L., 1988. Economic Design of Control Charts with Different Control
Limits for Different Assignable Causes. Management Science 34, 1347-1366.

Vance, L.C., 1983. A Bibliography of Statistical Quality Control Chart Techniques, 1970—
1980. Journal of Quality Technology 15, 59-62.

Woodall, W.H., 1985. The Statistical Design of Quality Control Charts. The Statistician
34, 155-160.

Woodall, W.H., 1986. Weakness of the Economic Design of Control Charts. Technometrics
28, 408-4009.

Yourstone, S.A., Zimmer, W.J., 1992. Non-normality and the Design of Control Charts for
Averages. Decision Sciences 23, 1099-1113.

Zhang, G., Berardi, V., 1997. Economic Statistical Design of X Control Charts for Systems

with Weibull In-control Times. Computers and Industrial Engineering 32, 575-586.

16



Table 4: Comparison of fully economic and economic-statistical designs for four population
distribution shapes, A = .5, 1, 2, E(V) =100, § = .5, p; = .05,.1,.15,.3,1, and ps = py

A | (ag,aq) | pr 0" R* k> a B E(C)/E(T)
1 35 3949 216 .0308 .2124 1.026
0,3 | 3 35 3949 216 .0308 .2124 1.026
15 40 43.75  2.12 .034 .1486 1.028
1 45 4793 2.07 .0385 .0996 1.032
.05 55 53.67 2.06 .0394 .0497 1.043
1 36 34.28 2.15 .0375 182 11.932
(0, 36) 3 36  34.28 2.15 .0375 182 11.932

15 39 36.03 214 .0379  .1496 11.933
1 44 39.44  2.08 .0422  .0999 11.938

.5 .05 54 4435 2.04 .0452 .0497 11.952
1 42 15.04 2.09 .0356 .1047 19.59
(5, 36) 15 42 15.04  2.09 .0356  .1047 19.59
1 42 15.17  2.07 .0369  .0995 19.59
.05 49 16.56 2.07 .0369 .0496 19.6

1 43 12,52 2.24 .0255  .1466 11.518

(2,10.9) | .15 43 1252 2.24 .0255 .1466 11.518

1 47 13.60 2.18 .0204 .0992 11.524
05 55 151 214 .0323 .0496 11.55
T 16 825 277 .0056 .1093 1.397
(0,3) | .15 16 825 277 .0056 .1094 1.397
1 16 842 271 .0067 .0985 1.398
05 19 927 271 .0067 .0496 1.408
T 17 939 295 0108 .1025 12.23
(0,36) | .15 17 939 295 .0108 .1025 12.23
1 17 944 293 0112 .0992 12.23
1 05 20 1038 2.86 .0118 .0498 12.24
T 19 687 298 0125 .0213 19.731

(5, 36) :
05 19 6.87 298 .0125 .0213 19.731
T 17 516 277 0088 0727 11.762

(2,109) | :
1 17 516 277 .0088 .072T 11.762
05 18 539 273  .0094 .0488 11.765
T 6 175 323 .0012 .0476 3.32

(0, 3) :
05 6 175 323 .0012 .0476 3.32
T 7 27 387 0048 .062 13.258

(0, 36) :
1 7 27  3.87 0048  .062 13.258
2 05 8 278  4.05 .0036  .047 13.26
T 8 28 449 0033 .0017 20.362

(5, 36) :
05 8 2.8 449 .0033 .0017 20.362
T 7 193 367 0020 .02 13.085

(2,10.9) |
05 7 193 3.67 .0029 .025 13.085
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