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ABSTRACT:

We consider the economic-statistical design of X̄-control charts for nonnormal quality mea-

surements. Specifically, we assume that the sample average X̄ has a Johnson distribution. The John-

son distribution is general in that it can be made to fit all possible values of skewness and kurtosis.

The cost model, proposed by McWilliams, is used to determine the optimal design parameters—

the sample size, time between successive samples, and number of standard deviations away from

the center line. This work is a generalization of Rahim’s models; for example, it combines mainly

three of Rahim’s models: (i) economic design of X̄ chart under non-normality (Rahim 1985), (ii)

economic design of X̄ chart under Weibull shock models (Banerjee and Rahim 1988), and (iii)

economic-statistical design of X̄ charts with non-Markovian in-control times (Al-Oraini and Rahim

2003).

Our sensitivity analysis shows that nonnormality has a significant effect on the design parameters

and hence should not be ignored. Sensitivity to the Weibull shape and the process-mean shift are

also considered. We also compare the economic-statistical and fully economic designs for nonnormal

data.

Keywords: Economic-Statistical Design; Johnson Distribution; Nonnormality; X̄ Control Chart.

1 Introduction

We consider the economic-statistical design of X̄ control charts, assuming that the

control chart point X̄ (i.e., the sample average of n quality measurements) has a Johnson

distribution (Johnson 1949) and that the time until the process is out of control has a

Weibull distribution. In designing a control chart, three parameters—the sample size n,

time h between successive samples, and the number k of standard deviations away from

the center line—must be determined. In economic-statistical design, these parameters are

chosen so that the expected cost per hour is minimized under constraints, e.g., minimum

allowable values of the Type I error probability (probability that X̄ falls outside control
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limits while the process is in control) and the Type II error probability (probability that X̄

falls within control limits while the process out of control).

The X̄ control chart is used to control the process mean at the desired level µ0. The

purpose is to maintain the required production quality. During the production process, the

product quality characteristic X may vary because of assignable causes, resulting in a shift of

the process mean to an inadequate level. Rahim (1985) lists some typical assignable causes,

including defective raw materials, faulty setup, untrained operators, and the cumulative

effects of heat, vibration, shock, etc. In this research, we assume that the process of interest

has a single assignable cause. Studies of economic models assuming multiple assignable

causes can be found in Duncan (1971) and Tagaras and Lee (1988). For surveys of the

literature of X̄ control charts, see Ho and Case (1994), Montgomery (1980), and Vance

(1983).

The three design parameters n, h, and k are chosen so that the expected hourly cost

(Equation 5) is minimized under constraints on the Type I and II error probabilities, or

equivalently, on the average run length (ARL). The expected hourly cost equals the ratio of

the expected cycle cost to the expected cycle time, where the production cycle is illustrated

in Figure 1. The cost model used here is based on the model proposed by McWilliams

(1989), which is an extension of the work of Lorenzen and Vance (1986). Woodall (1985,

1986) points out that a fully economic design ignores the statistical performance of control

charts. On one hand, this may result in too many defectives. On the other hand, it may

cause too many false alarms. If there are too many such false alarms, the control chart may

be ignored in practice. Saniga (1989) first proposes the economic-statistical design. Al-

Oraini and Rahim (2003) show that the economic-statistical design significantly improves

the statistical performance at only a slight cost increase. Also, there is the statistical design,

which chooses only the values of n and k under the desired Type I and II error probability

constraints. However, n and k may not be chosen optimally to reduce the expected hourly

cost.

Most literature assumes that the sample average X̄ and the process in-control time

follow normal and exponential distributions, respectively. (See, for example, Duncan 1956,

and Lorenzen and Vance 1986.) A large sample size would result in an approximately

normal distribution for X̄. In practice, however, the sample size for the X̄ control chart is

usually small (e.g., Duncan, 1956, suggests 2 ≤ n ≤ 10 for ∆ ≥ 2) and therefore X̄ is not
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necessarily normally distributed.

Some nonnormal literature exists. Lashkari and Rahim (1982) consider the CUSUM

chart, and Nagendra and Rai (1971) and Rahim (1985) consider the economic design of X̄

charts. All of this work models the probability density function of the quality measurement

X by the first four terms of the Edgeworth series, where the four terms are functions of

the first four moments. The normal distribution is a special case of Edgeworth series. Burr

(1967), Yourstone and Zimmer (1992) and Chou et al. (2000) model the distribution of

X̄ as a Burr distribution (Burr 1942) using the moment method (see also Section 2). The

advantage of the Burr distribution is that it has a closed-form cdf (cumulative distribution

function), which simplifies computations of the Type I and II error probabilities (Equations 2

and 3). The disadvantage, however, is that because the Burr distribution is right skewed,

unlike the Edgeworth series, it strictly limits X̄ to a nonnormal distribution.

This research considers the economic-statistical design to minimize the cost of control

charts while keeping reasonable Type I and II error probabilities. We assume that the

sample average X̄ has a Johnson distribution (see the Appendix). We choose the Johnson

distribution because as shown in Figure 2, the Johnson family (including normal, lognormal,

bounded, and unbounded types) covers the entire feasible part of the (β1, β2) plane, where

β1 stands for the squared skewness and β2 the kurtosis. All lognormal (β1, β2) fall on the

lognormal curve in the figure. The region above the lognormal curve consists of bounded

Johnson distributions, denoted by SB. The region below, which consists of unbounded

Johnson distributions, we denote SU . For each point (β1, β2), there is one corresponding

Johnson distribution (Johnson et al. 1994, p. 36). All (β1, β2) for the Edgeworth series fall

on a curve below the lognormal curve; all (β1, β2) for the Burr distribution form a region

that is above the Weibull curve in the Pearson (
√

β1, β2) plane (Johnson et al., 1994, pages

29 and 687). We choose the Johnson family for a wide range of the skewness and kurtosis.

In this work, we use the Johnson family to model the distribution of X̄ , rather than X,

for better computational efficiency. If we were to model the distribution of X as Johnson,

the distribution of X̄ could possibly not be Johnson. One disadvantage of this approach is

that it complicates the evaluation of the Type I and Type II error probabilities, which are

n dimensional integrals and need to be computed numerically or estimated by Monte Carlo

simulation. As a result, finding the optimal values of n, h, and k becomes more complex.

Although not reported here, our simulation results show that the optimal values of n, h,

3



and k do not vary much in the derivation of the Johnson model for X.

We also assume that the in-control time (i.e., the elapsed time before the assignable

cause occurs) follows a Weibull distribution. Duncan (1956) and Lorenzen and Vance

(1986) assume that the in-control time distribution is exponential. However, the mem-

oryless property of the exponential distribution may not be applicable in practice. The

Weibull distribution has the advantages that it offers many distribution shapes (including

exponential), a nonconstant hazard rate function, and a closed-form cdf. Literature on the

control chart applications of the Weibull distribution includes Banerjee and Rahim (1988),

McWilliams (1989), and Zhang and Berardi (1997).

The rest of this paper is organized as follows. In Section 2, we discuss the cost function

and constraints under the Johnson and Weibull distribution assumptions. In Section 3, we

perform sensitivity analysis to study the effects of nonnormality, Weibull shape, and shift

on the optimal parameters. Comparisons of the fully economic and economic-statistical

designs are also discussed. In Section 4, we give our conclusions.

2 The Cost Model

The cost model used here is identical to the McWilliams (1989) model except that the

distribution of the sample average X̄ is assumed to have a Johnson distribution (see the

Appendix). The production process is assumed to start in an in-control state, where the

quality measurement X has mean µ = µ0, standard deviation σ, skewness α3 and kurtosis

α4. (Notice that α3 = E[(X − µ)/σ]3 and α4 = E[(X − µ)/σ]4 ). When the assignable

cause occurs, the process mean µ shifts from µ0 to µ0 + ∆σ, ∆ ∈ R, but the standard

deviation, skewness, and kurtosis remain unchanged. The value of ∆ is assumed known so

that the optimal values of n, h, and k can be computed. The in-control time V is assumed

to have a Weibull distribution with shape parameter θ and scale parameter λ. The Weibull

cdf is F (v) = 1 − exp{−(λv)θ} and its mean is λ−1Γ(1 + θ−1). When θ = 1, the Weibull

distribution is an exponential distribution. In order to detect a shift in the process mean, a

sample of n independent quality characteristic measurements X1, ...,Xn is taken at intervals

of h hours. If the sample average X̄ falls outside the control limits µ0±kσ/
√

n for a positive

constant k, then an out-of-control signal is recorded in the control chart. In this case, the

quality-control engineers try to determine whether there is an assignable cause. If such

4



Figure 1: Plot of a production cycle (from Lorenzen and Vance, 1986)

an assignable cause is identified, appropriate action is taken to the production process and

restore the in-control state.

For a given value of the sample size n, the distribution of X̄ can be modeled as a

Johnson distribution using the first four moments of X. Since X̄ is the sample average of

n independent observations of X, the first four moments of X̄ are

E(X̄) = µ, V(X̄) = σ2/n, α3,X̄ = α3/
√

n, α4,X̄ =
α4 − 3

n
+ 3 ,

where α3,X̄ and α4,X̄ denote the skewness and kurtosis of X̄ . Given n, we can fit a Johnson

distribution to the four moments of X̄ (see the Appendix). Notice that σ, α3, and α4 are

assumed known to the quality engineer. In practice these values can be estimated, e.g.,

via the moment method, using many realizations of X. Though the mean µ is unknown,

it is assumed that µ equals a known target mean µ0 when the process is in control and

equals µ0 + ∆σ otherwise. To compute the Type I and II error probabilities α and β in

Equations (2) and (3), we can fit a Johnson distribution to X̄ based on its conditional

mean value (i.e., µ0 for α and µ0 + ∆σ for β) and then compute the Johnson cumulative

probability.

The X̄ control chart is designed to detect whether the process is out of control. The

design parameters n, h, and k are chosen to minimize the expected hourly cost, i.e.,

E(C)/E(T ), where C is the cycle cost, T is the cycle time, and E(·) is the mean func-

tion. A quality cycle is defined as the time until the next in-control period. The sequence

of quality cycles follows a renewal reward process because the in-control times in each cycle

are identically and independently distributed. Therefore, the expected hourly cost E(C/T )

equals the ratio of the expected cycle cost to the expected cycle time (Ross 1970, page 53),

i.e., E(C)/E(T ). Computations of the expected cycle time and cycle cost are described as

5



follows.

The expected cycle time consists of four parts as shown in Figure 1: (i) the expected time

elapsed before the assignable cause occurs, (ii) the expected time between the occurrence of

the assignable cause and the next out-of-control signal, (iii) the expected time T1 required

to identify the assignable cause, and (iv) the expected time T2 to repair the process. As

described in McWilliams (1989), the expected cycle time is

E(T ) =
[
λ−1Γ(1 + θ−1) + (1 − δ1)T0s/ARL0

]

+
[
(s + ARL1)h − λ−1Γ(1 + θ−1) + nE

]
+ T1 + T2

= (s + ARL1)h + (1 − δ1)T0s/ARL0 + nE + T1 + T2, (1)

where δ1 equals 1 if production continues during the assignable-cause search and 0 otherwise,

T0 is the expected assignable-cause search time for a false alarm, ARL0 and ARL1 are the

average run lengths when the process is in control and out of control, E is the expected

sampling time for one observation, and s =
∑∞

i=0 i P{ih ≤ V < (i + 1)h} =
∑∞

i=1 e−(λih)θ

is the expected number of samples taken during the in-control state.

For independent observations, both ARL0 and ARL1 are related to Type I and II error

probabilities as follows. The average run length ARL0 is equal to 1/α, where α is the Type

I error probability defined as

α = P{ X̄ < µ0 − kσ/
√

n or X̄ > µ0 + kσ/
√

n | µ = µ0} (2)

= 1 + Fµ0(µ0 − kσ/
√

n) − Fµ0(µ0 + kσ/
√

n),

and Fµ(·) is the Johnson cdf with mean µ, standard deviation σ/
√

n, skewness α3,X̄ , and

kurtosis α4,X̄ . (Computation of the Johnson cdf is described in the Appendix.) Similarly,

ARL1 = 1/(1 − β), where

β = P{µ0 − kσ/
√

n ≤ X̄ ≤ µ0 + kσ/
√

n | µ = µ0 + ∆σ} (3)

= Fµ0+∆σ(µ0 + kσ/
√

n) − Fµ0+∆σ(µ0 − kσ/
√

n)

is the Type II error probability. If the sample average X̄ has a normal distribution (i.e.,

α3,X̄ = 0 and α4,X̄ = 3), then α = 2Φ(−k) and β = Φ(k − ∆
√

n) − Φ(−k − ∆
√

n), where
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Φ is the standard normal cdf.

There are costs associated with each of the four parts of the cycle time. The cost of the

entire cycle includes the cost of nonconformities (while in control and out of control), false

alarms, and repair. Let C0 and C1 (> C0) denote the hourly costs due to nonconformities

produced while the process is in and out of control, respectively. Furthermore, let δ2 be 1

if production continues during the repair process, and 0, otherwise. The expected cost per

cycle arising from nonconformities is then C0λ
−1Γ(1 + θ−1) + C1[(s + ARL1)h − λ−1Γ(1 +

θ−1)+nE+δ1T1+δ2T2]. If we denote the cost per false alarm by cf , then the total expected

cost for false alarms is cfs/ARL0. Let a be the fixed cost per sample and b be the variable

cost per unit sampled. The cost per sample is then a+ bn. Therefore, the expected cost for

sampling and charting the result is (a + bn)h−1[(s + ARL1)h + nE + δ1T1 + δ2T2]. Let W

be the cost for locating and repairing the assignable cause. The expected cost per cycle is

therefore

E(C) = C0λ
−1Γ(1 + θ−1) + C1

[
(s + ARL1)h − λ−1Γ(1 + θ−1) + nE + δ1T1 + δ2T2

]

+cfs/ARL0 + (a + bn)h−1
[
(s + ARL1)h + nE + δ1T1 + δ2T2

]
+ W. (4)

In economic-statistical design, the X̄-chart design parameters n, h, and k are chosen

to minimize the expected cost per hour for a quality cycle under constraints on the Type

I and II error probabilities α and β. Let p1 and p2 denote the upper bounds for α and β,

respectively. The design parameters n, h, and k are determined by solving the optimization

problem:

min E(C)/E(T ) (5)

s.t. α < p1,

β < p2,

n ∈ {2, 3, ...}, h > 0, k > 0.

The objective function E(C)/E(T ), however, is not monotonic with respect to the design

parameters n, h, and k. For the sensitivity analysis in Section 3, we use the grid search

method to compute the optimal values n∗, h∗, and k∗ of n, h, and k, respectively. The

procedure for computing n∗, h∗, and k∗ can be found in Nagendra and Rai (1971) and von
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Collani (1986, 1988).

3 Sensitivity Analysis

Here we perform sensitivity analysis to investigate how nonnormality, Weibull shape,

and shift affect the optimal values of the design parameters—that is, the sample size n∗,

sampling interval h∗, and factor k∗. We also compare the economic-statistical design to the

fully economic design.

Table 1 shows the effects of nonnormality on the optimal design values n∗, h∗, and k∗.

Specifically, we study how n∗, h∗, and k∗ change as the skewness α3 and kurtosis α4 of the

quality measurement X vary. There are 55 design points, corresponding to two values of the

bound parameters (p1 = 1, .01 and p1 = p2), as shown in column 1 of the table, three values

of the shift parameter (∆ = .5, 1, 2), as shown in column 2, and 11 values of the population

skewness, kurtosis combinations as shown in column 3. We test at three skewness values

(α3 = 0, 2, 5) and three kurtosis values (α4 = 6, 36, 100). Excluding the invalid point (5,

6), these values yield 8 points. In addition, we include the point (0, 3), which corresponds

to the normal distribution, and the points (2, 10.9) and (5, 68.3), which represent lognormal

distribution shapes. Figure 2 illustrates these 11 combinations of skewness and kurtosis in

the (β1, β2) plane. Furthermore, only positive skewness is considered because the control

limits are symmetric. Notice that when p1 = p2 = .01, some distribution shapes may have

no feasible solutions for ∆ = .5, and hence, only ∆ = 1 and 2 are considered.

The other parameters are set as follows. The Weibull shape parameter θ is set to

.5 and the scale parameter λ is chosen so that the mean in-control time E(V ) = 100.

Figure 2: The (β1, β2) plane
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Figure 3: Plots of α and β as functions of the kurtosis α4 for n = 26, k = 2.74, ∆ = 1, and
α3 = 0, 2, 5 (the other cost parameters are the same as in Table 1)

The nonconformity costs C0 and C1 are made proportional to the defect rate, defined as

P{|X − µ0| > 3.5σ}. Here, we set C0 = 1000 P{|X − µ0| > 3.5σ|µ = µ0} and hence,

C1 = 1000 P{|X − µ0| > 3.5σ|µ = µ0 + ∆σ}. The other cost parameters are given by

δ1 = δ2 = 1, E = 0, T0 = 0, T1 = 2, T2 = 0, cf = 50, a = .5, b = .1, and W = 25.

Arbitrarily we set µ0 = 0 and σ = 1 for simplicity because µ0 and σ affect neither the mean

hourly cost E(C)/E(T ) nor the Type I and II error probabilities α and β.

Table 1 lists n∗, h∗, k∗, the Johnson distribution type of X̄ (given in the “type” column),

C0, C1, α, β, and the expected hourly cost. We see that nonnormality affects the values of

n∗, h∗, and k∗. The more (α3, α4) deviates from (0, 3), the more n∗, h∗, and k∗ deviate from

the normal values, which are, for examples, (25, 10.63, 2.67) for p1 = p2 = .01 and ∆ = 1,

and (8, 1.95, 3.33) for ∆ = 2. For the sensitivity to the skewness, usually k∗ increases

and n∗ and h∗ decrease as the skewness α3 goes up. Furthermore, the optimal parameters

are sensitive to kurtosis α4. When the skewness α3 is small and p1=p2 = .01, n∗ and k∗

increase as α4 increases. This is because in an economic-statistical design with low p1 and

p2 values, the Type I and II error probabilities α and β strongly affect the optimal design

parameters n∗ and k∗. Figure 3 shows that for a small skewness, α and β increase as the

kurtosis increases, and hence, n∗ and k∗ vary monotonically with respect to α4. However,

when the skewness α3 is large (e.g., 5), α, and hence n∗ and k∗, may not vary monotonically

with respect to the kurtosis α4. Furthermore, the expected hourly cost increases with α4

when α3 is small and decreases otherwise.

The Johnson distribution type of X̄ depends on the population skewness and kurtosis.
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Table 1: The sensitivity analysis of non-normality on the optimal values n∗, h∗, and k∗ with
∆ = 1, 2, E(V ) = 100, θ = .5, p1 = 1, .01, and p1 = p2

p1 ∆ (α3, α4) n∗ h∗ k∗ type C0 C1 α β E(C)/E(T )

(0, 3) 35 39.49 2.16 SN .465 1.382 .0308 .2124 1.026
(0, 6) 38 27.85 2.22 SU 5.951 7.432 .0273 .1926 6.646
(0, 36) 36 34.28 2.15 SU 11.304 12.475 .0375 .182 11.932
(0, 100) 32 39.36 2.04 SU 11.995 12.995 .0485 .1787 12.578
(2, 6) 45 5.53 2.26 SB 0 30.247 .0231 .1346 3.04

.5 (2, 10.9) 43 12.52 2.24 SU 10.182 16.365 .0255 .1466 11.518
(2, 36) 41 18.81 2.21 SU 11.089 14.164 .032 .1487 12.058
(2, 100) 36 24.55 2.12 SU 11.922 13.899 .0422 .1588 12.714
(5, 36) 42 15.04 2.09 SB 18.392 23.368 .0356 .1047 19.59
(5, 68.3) 41 14.43 2.12 SU 13.288 18.511 .0364 .1179 14.519
(5, 100) 40 16.21 2.13 SU 11.88 16.093 .0385 .1238 12.995
(0, 3) 16 8.25 2.77 SN .465 6.213 .0056 .1093 1.397
(0, 6) 16 7.52 2.8 SU 5.951 12.904 .0066 .1124 6.974
(0, 36) 17 9.39 2.95 SU 11.304 16.518 .0108 .1025 12.23
(0, 100) 16 10.47 2.94 SU 11.995 16.406 .0152 .1061 12.866
(2, 6) 17 2.82 2.74 SB 0 55.288 .0083 .0668 3.157

1 1 (2, 10.9) 17 5.16 2.77 SU 10.182 26.781 .0088 .0727 11.762
(2, 36) 17 7.06 2.9 SU 11.089 20.279 .0114 .0887 12.288
(2, 100) 17 8.7 2.98 SU 11.922 18.387 .0142 .0902 12.953
(5, 36) 19 6.87 2.98 SB 18.392 30.111 .0125 .0213 19.731
(5, 68.3) 17 6.2 2.84 SU 13.288 26.493 .0149 .0569 14.725
(5, 100) 17 6.75 2.9 SU 11.88 22.87 .0149 .0682 13.197
(0, 3) 6 1.75 3.23 SN .465 66.807 .0012 .0476 3.32
(0, 6) 6 2 3.39 SU 5.951 57.673 .0023 .0632 8.408
(0, 36) 7 2.7 3.87 SU 11.304 44.874 .0048 .062 13.258
(0, 100) 7 3.06 3.99 SU 11.995 39.535 .0065 .0646 13.76
(2, 6) 6 1.46 3.43 SB 0 107.933 .0029 .0233 4.047

2 (2, 10.9) 7 1.93 3.67 SU 10.182 75.767 .0029 .025 13.085
(2, 36) 7 2.43 3.85 SU 11.089 53.386 .0048 .0503 13.33
(2, 100) 7 2.84 3.98 SU 11.922 44.15 .0065 .0583 13.853
(5, 36) 8 2.8 4.49 SB 18.392 53.75 .0033 .0017 20.362
(5, 68.3) 7 2.42 3.92 SU 13.288 60.332 .0065 .028 15.696
(5, 100) 7 2.54 3.95 SU 11.88 53.662 .0067 .0403 14.128

(0, 3) 25 10.63 2.67 SN .0076 .0099 1.453
(0, 6) 26 9.73 2.74 SU .0072 .0098 7.036
(0, 36) 29 12.04 2.88 SU .0099 .0099 12.293
(0, 100) 33 13.86 3.12 SU .0098 .0099 12.943
(2, 6) 22 3.23 2.71 SB .0082 .0096 3.226

1 (2, 10.9) 23 5.99 2.75 SU .0085 .0098 11.811
(2, 36) 27 8.63 2.94 SU .0089 .0098 12.348
(2, 100) 31 11.01 3.12 SU .0099 .0099 13.03
(5, 36) 22 7.07 3.16 SB .0088 .0092 19.742
(5, 68.3) 25 6.98 3.13 SU same as for p1=1 .0092 .0098 14.769

.01 (5, 100) 27 7.92 3.14 SU .0099 .0098 13.259
(0, 3) 8 1.95 3.33 SN .0009 .0099 3.373
(0, 6) 8 2.28 3.25 SU .0027 .0099 8.452
(0, 36) 10 3.11 3.68 SU .005 .0099 13.314
(0, 100) 11 3.59 3.87 SU .0063 .0099 13.828
(2, 6) 7 1.49 3.64 SB .0015 .0093 4.049

2 (2, 10.9) 7 2 3.44 SU .0042 .0097 13.096
(2, 36) 9 2.69 3.71 SU .005 .0099 13.368
(2, 100) 10 3.26 3.79 SU .0069 .0099 13.911
(5, 36) 8 2.8 4.49 SB .0033 .0017 20.362
(5, 68.3) 8 2.52 3.96 SU .006 .0098 15.706
(5, 100) 9 2.75 4 SU .0059 .0098 14.158
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It is well known that the sample average of the normal population is also distributed as

normal. Intuitively if the population (α3, α4) falls in the bounded (or unbounded) area in

the (β1, β2) plane, the Johnson type of X̄ is SB (or SU). However, if the population (α3,

α4) falls on the lognormal line, X̄ is distributed as SU , rather than lognormal.

The central limit theorem has little effect on the optimal values of n∗, h∗, and k∗. Even

when n∗ is large, the values of h∗ and k∗ for nonnormal distributions deviate from the

normal values. This is because the nonnormality affects C0 and C1. The central limit

theorem brings the nonnormal α and β close to the normal values. However, the nonnormal

C0 and C1 differ significantly from the normal C0 and C1. Hence, the nonnormal n∗, h∗,

and k∗ differ from the normal values even when n∗ is large.

Next we study the sensitivity of the Weibull shape parameter θ. Tables 2 and 3 list the

optimal values n∗, h∗, and k∗ for θ = .5, .75, 1, 2, E(V ) = 10, 100, ∆ = 1, 2, p1 = .05,

1, and p2 = p1. Four population shapes are shown in column 1 of both tables: (0, 36), (5,

36), (2, 10.9) and (0, 3). Column 2 shows two values of p1, p1 = .05 and p1 = 1. However,

for (α3, α4) = (5, 36), the results for p1 = .05 are not displayed because they are identical

to the results for p1 = 1 (see Table 4). The values of the remaining cost parameters are as

given in Table 1. Both tables show that as θ increases (while E(V ) remains constant, but

λ decreases), h∗ increases slightly because Var(V ) gets smaller. (However, the values of n∗

and k∗ are insensitive to changes in θ.) The sensitivity is more obvious for θ < 1 than θ ≥ 1.

A large decrease in E(V ) results in a modest decrease in h∗. We expect a decrease in h∗

because when the assignable cause occurs more frequently, the sampling frequency should

increase as well. However, the sampling frequency may not increase with the same speed

because otherwise, E(T ) would be much shorter and would result in a larger hourly cost.

Table 4 compares the fully economic and economic-statistical designs. There are in total

60 design points, corresponding to the parameter values (α3, α4) ∈ {(0, 3), (0, 36), (5, 36),

(2, 10.9)}, ∆ ∈ {.5, 1, 2}, p1 ∈ {.05, .1, .15, .3, 1} and p2 = p1. The other cost parameters

are as in Table 1. When p1 = p2 = 1 (the top line in each row of the table), the economic-

statistical design is called the fully economic design because there are no limits on the Type

I and Type II error probabilities. Table 4 shows that the economic-statistical design is

preferable because the Type I and II error probabilities can be kept as low as .05 at only

a slight increase in the mean hourly cost. By contrast, the fully economic design has the

lowest cost but the Type II error probability varies as high as .19. If we require that α and β
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Table 2: The effects of the Weibull shape θ on n∗, h∗, and k∗ with θ = .5, .75, 1, 2, E(V )
= 10, 100, ∆ = 1, 2, p1 = .05, 1, p2 = p1, and (α3, α4) ∈ {(0, 36), (5, 36)}

∆ = 1 ∆ = 2
(α3, α4) p1 E(V ) θ n∗ h∗ k∗ E(C)/E(T ) n∗ h∗ k∗ E(C)/E(T )

.5 17 9.39 2.95 12.23 7 2.7 3.87 13.258
.75 17 10.01 2.91 12.207 7 2.83 3.84 13.227

100 1 18 10.47 2.94 12.199 7 2.86 3.84 13.22
2 18 10.66 2.93 12.195 7 2.88 3.83 13.217

1 .5 14 5.32 2.68 15.295 7 1.03 3.83 21.696
.75 14 5.63 2.62 15.244 7 1.1 3.79 21.573

10 1 14 5.89 2.58 15.214 7 1.13 3.77 21.531
(0, 36) 2 14 6.57 2.49 15.178 7 1.15 3.76 21.51

.5 20 10.38 2.86 12.24 8 2.78 4.05 13.26
.75 20 11 2.86 12.213 8 2.91 4.02 13.228

100 1 20 11.28 2.86 12.204 8 2.95 4.01 13.22
2 20 11.48 2.86 12.199 8 2.96 4.01 13.218

.05 .5 17 6.09 2.51 15.321 7 1.04 3.73 21.7
.75 17 6.31 2.51 15.263 7 1.11 3.73 21.574

10 1 17 6.53 2.51 15.229 7 1.14 3.73 21.531
2 17 7.13 2.51 15.186 7 1.15 3.73 21.51

.5 19 6.87 2.98 19.731 8 2.8 4.49 20.362
.75 19 7.3 2.96 19.694 8 2.93 4.48 20.327

100 1 19 7.49 2.95 19.682 8 2.97 4.48 20.319
(5, 36) 2 19 7.58 2.95 19.677 8 2.99 4.48 20.316

1 .5 16 2.9 2.7 24.431 7 1.05 4.19 29.05
.75 16 3.11 2.67 24.315 7 1.12 4.19 28.915

10 1 16 3.26 2.65 24.26 7 1.15 4.18 28.869
2 16 3.45 2.63 24.214 7 1.17 4.18 28.845

are both under .05, the mean hourly cost increases by less than 2%. However, on the whole,

the economic-statistical design is superior. When the shift ∆ is large, the fully economic

design has a low α and β, and in several cases, the fully economic and economic-statistical

designs are identical. The sample size n∗ decreases as the bounds p1 and p2 become larger,

but decreases slowly when p1 and p2 are greater than .15.

Table 4 also shows the effect of the shift ∆ on the optimal values n∗, h∗, and k∗. When

∆ increases, the sample size n∗ decreases, the time h∗ between samples decreases, and the

factor k∗ increases. If ∆ is large, it is easier to detect that the process is out of control

and hence, the sample size n need not be large. Usually when n decreases, h decreases as

well. For a smaller sample, the sampling cost is less, and hence more samples are allowed.

Furthermore, since the Type II error probability β is reduced by a large ∆, the factor k

increases, reducing α while maintaining an allowable value of β.
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Table 3: The effects of the Weibull shape θ on n∗, h∗, and k∗ with θ = .5, .75, 1, 2, E(V )
= 10, 100, ∆ = 1, 2, p1 = .05, 1, p2 = p1, and (α3, α4) ∈ {(2, 10.9), (0, 3)}

∆ = 1 ∆ = 2
(α3, α4) p1 E(V ) θ n∗ h∗ k∗ E(C)/E(T ) n∗ h∗ k∗ E(C)/E(T )

.5 17 5.16 2.77 11.762 7 1.93 3.67 13.085
100 .75 18 5.56 2.8 11.725 7 2.02 3.65 13.046

1 18 5.67 2.79 11.715 7 2.04 3.64 13.038
2 18 5.74 2.78 11.711 7 2.05 3.64 13.036

1 .5 16 2.08 2.68 17.494 7 .72 3.64 26.842
10 .75 16 2.23 2.64 17.369 7 .76 3.61 26.682

1 16 2.32 2.62 17.316 7 .78 3.6 26.633
(2, 10.9) 2 16 2.42 2.59 17.279 7 .79 3.6 26.612

.5 18 5.39 2.73 11.765
100 .75 18 5.67 2.73 11.726

1 18 5.77 2.73 11.716
2 18 5.82 2.73 11.711

.05 .5 17 2.18 2.62 17.506 same as for p1=1
10 .75 17 2.32 2.62 17.375

1 17 2.4 2.62 17.319
2 17 2.48 2.62 17.28

.5 16 8.25 2.77 1.397 6 1.75 3.23 3.32
100 .75 16 8.74 2.75 1.375 6 1.83 3.21 3.286

1 16 8.98 2.73 1.368 6 1.84 3.21 3.28
2 17 9.37 2.76 1.364 6 1.85 3.21 3.278

1 .5 14 4.35 2.62 4.614 5 .62 3.07 17.097
10 .75 14 4.6 2.58 4.561 6 .69 3.18 16.957

1 14 4.82 2.55 4.533 6 .71 3.17 16.914
(0,3) 2 15 5.39 2.53 4.502 6 .72 3.16 16.897

.5 19 9.27 2.71 1.408
100 .75 19 9.81 2.71 1.382

1 19 10.05 2.71 1.374 same as for p1=1
2 19 10.2 2.71 1.37

.05 .5 17 5.09 2.47 4.645 6 .66 3.2 17.099
10 .75 17 5.31 2.47 4.583 6 .69 3.18 16.957

1 17 5.51 2.47 4.549 6 .71 3.17 16.914
2 17 5.94 2.47 4.51 6 .72 3.16 16.897

4 Conclusions

We consider the economic-statistical design of X̄ control charts under the assumption

that the sample average X̄ has a Johnson distribution and the time V until the assignable

cause occurs has a Weibull distribution. We choose the Johnson probability model because

we can fit it to any desired first four moments. The control-chart design parameters n,

h, and k are determined so that the expected hourly cost is minimized under constraints

on the Type I and II error probabilities. We discuss the cost model, computations of the

expected hourly cost, and Johnson probability modeling. Sensitivity analysis is performed

to investigate the effects of nonnormality, Weibull shape, and shift on the optimal design

parameters n∗, h∗, and k∗. Four results follow: (i) The values of n∗, h∗, and k∗ for nonnormal
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distributions deviate quite a bit from the values for the normal distribution. Therefore, in

cost control, nonnormality can not be ignored. (ii) The Weibull shape parameter θ has

a small effect on n∗, h∗, and k∗. When θ decreases while E(V ) is held constant, Var(V )

increases, and hence h∗ decreases (i.e., more sampling). (iii) When the shift ∆ increases, it

is more easily detected, and hence n∗ and h∗ decrease. (iv) The economic-statistical design

is superior to the fully economic design because the Type I and II error probabilities can

be reduced to acceptable levels at only a slight increase in cost.
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Appendix: The Johnson Probability Model

The Johnson distribution family, proposed by Johnson (1949), includes three transfor-

mations of the standard normal distribution. Let Y and Z denote the Johnson and standard

normal random variables, respectively. The three transformations are:

SL : Z = γ + δ ln(
Y − ξ

η
), η( Y − ξ) ≥ 0,

SB : Z = γ + δ ln(
Y − ξ

ξ + η − Y
), 0 ≤ Y − ξ ≤ η, (6)

SU : Z = γ + δ sinh−1(
Y − ξ

η
), −∞ < Y < ∞.

The constants ξ and η are location and scale parameters, respectively; γ and δ are the

shape parameters. The second transformation, SB , provides a bounded random variable

Y ; the third transformation, SU , results in an unbounded Y . For lognormal distributions,

SL, the range is bounded below if η > 0 and bounded above if η < 0. Furthermore, the

normal distribution, denoted as SN , is one of the types of the Johnson distribution besides

SU , SB, and SL. We can use the numerical routines of Hill et al. (1976) to find the

Johnson distribution having the four desired moments mean, standard deviation, skewness,

and kurtosis. To compute the Johnson cumulative probability F (y) = P{Y ≤ y}, we can

transform y to z using Equation (6) and then let F (y) = Φ(z), where Φ is the standard

normal cdf. For example, if Y is a lognormal distribution, F (y) = Φ[γ + δ ln((y − ξ)/η)].
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Table 4: Comparison of fully economic and economic-statistical designs for four population
distribution shapes, ∆ = .5, 1, 2, E(V ) = 100, θ = .5, p1 = .05, .1, .15, .3, 1, and p2 = p1

∆ (α3, α4) p1 n∗ h∗ k∗ α β E(C)/E(T )
1 35 39.49 2.16 .0308 .2124 1.026
...

(0, 3) .3 35 39.49 2.16 .0308 .2124 1.026
.15 40 43.75 2.12 .034 .1486 1.028
.1 45 47.93 2.07 .0385 .0996 1.032
.05 55 53.67 2.06 .0394 .0497 1.043
1 36 34.28 2.15 .0375 .182 11.932
...

(0, 36) .3 36 34.28 2.15 .0375 .182 11.932
.15 39 36.03 2.14 .0379 .1496 11.933
.1 44 39.44 2.08 .0422 .0999 11.938

.5 .05 54 44.35 2.04 .0452 .0497 11.952
1 42 15.04 2.09 .0356 .1047 19.59
..
.

(5, 36) .15 42 15.04 2.09 .0356 .1047 19.59
.1 42 15.17 2.07 .0369 .0995 19.59
.05 49 16.56 2.07 .0369 .0496 19.6
1 43 12.52 2.24 .0255 .1466 11.518
...

(2, 10.9) .15 43 12.52 2.24 .0255 .1466 11.518
.1 47 13.60 2.18 .0294 .0992 11.524
.05 55 15.1 2.14 .0323 .0496 11.55
1 16 8.25 2.77 .0056 .1093 1.397
..
.

(0, 3) .15 16 8.25 2.77 .0056 .1094 1.397
.1 16 8.42 2.71 .0067 .0985 1.398
.05 19 9.27 2.71 .0067 .0496 1.408
1 17 9.39 2.95 .0108 .1025 12.23
...

(0, 36) .15 17 9.39 2.95 .0108 .1025 12.23
.1 17 9.44 2.93 .0112 .0992 12.23

1 .05 20 10.38 2.86 .0118 .0498 12.24
1 19 6.87 2.98 .0125 .0213 19.731

(5, 36)
...

.05 19 6.87 2.98 .0125 .0213 19.731
1 17 5.16 2.77 .0088 .0727 11.762

(2, 10.9)
...
.1 17 5.16 2.77 .0088 .0727 11.762
.05 18 5.39 2.73 .0094 .0488 11.765
1 6 1.75 3.23 .0012 .0476 3.32

(0, 3)
...

.05 6 1.75 3.23 .0012 .0476 3.32
1 7 2.7 3.87 .0048 .062 13.258

(0, 36)
...
.1 7 2.7 3.87 .0048 .062 13.258

2 .05 8 2.78 4.05 .0036 .047 13.26
1 8 2.8 4.49 .0033 .0017 20.362

(5, 36)
...

.05 8 2.8 4.49 .0033 .0017 20.362
1 7 1.93 3.67 .0029 .025 13.085

(2, 10.9)
...

.05 7 1.93 3.67 .0029 .025 13.085
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