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Abstract

We consider the batching methods for estimating the variance of the sample variance based

on steady-state correlated data. Intensive research has been devoted to the problem of

estimating the variance of the sample mean, but little to the sample variance when the

desired performance measure is the population variance. The batch-variance estimator (for

the variance of the sample variance) is a function of the batch variances, which are the

sample variances of the batched data. By viewing the sample variance as a sample mean

of squared terms, we show that the asymptotic results for the batch-variance and batch-

mean estimators are analogous in two ways. First, both have the same convergence rates.

Second, whether batch means or batch variances are employed, a single rule applies to

both multipliers in the asymptotic formula. The constant multipliers are the same, and the

other multipliers depend on the data properties, which are analogous for batch variances and

batch means with squared terms. We prove these results analytically for the nonoverlapping

batch-variance method and argue that they can be extended to cover the overlapping batch-

variance method.
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1 Introduction

Simulation is a useful tool for analysis of complex systems. However, the attention

devoted to model development is rarely matched by concern for appropriate analysis

of the output data. In particular, when the goal to estimate a performance measure

θ, such as the mean, variance, or quantile, two issues in output analysis arise: (i) The

choice of the estimator θ̂. (ii) Assessment of the quality of θ̂, normally by calculating

its mean square error (mse), defined as the sum of the squared bias and variance

of θ̂. When the output data are identically and independently distributed (i.i.d.),

usually both of these tasks are straightforward. In manufacturing systems, however,

the simulation output data are usually correlated, for examples, waiting times in

queue, cycle times, etc. Ignoring this dependence may underestimate the mse and

hence overestimate the goodness of the point estimator.

This research considers the problem of estimating the variance of the sample vari-

ance, a common estimator for the population variance, based on simulation output

data that are identically distributed but correlated to each other. Let {X1, X2, ..., Xn}
denote a set of simulation output data (of size n), which are stationary with popula-

tion mean µ and population variance σ2. Here we assume that the desired performance

measure is θ = σ2. A typical estimator for θ = σ2 is θ̂ = S2 =
∑n

i=1(Xi−X̄)2/(n−1).

If {X1, X2, ..., Xn} are dependent but covariance stationary, S2 is a consistent esti-

mator of σ2 with E(S2) = n(n − 1)−1[σ2 − Var(X̄)] = n(n − 1)−1σ2{1 − n−1[1 +

2
∑n−1

h=1(1 − n−1h)ρh]}, where ρh is the lag-h autocorrelation of X (David, 1985).

Moreover, Priestly (1981, p. 327) gives a large-sample approximation for the vari-

ance: Var(S2) ≈ 2σ4n−1
∑∞

h=−∞ ρ2
h for n large. For the i.i.d. special case, S2 would

be unbiased with variance Var(S2) = σ4n−1[α4 − (n − 3)/(n − 1)], where α4 is the

kurtosis of X (Wilks, 1962, p. 200). Our research problem is to estimate Var(S2),

for purposes such as constructing confidence intervals and knowing the statistical
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properties of the estimator V̂ar(S2).

The batching method is useful for estimating the variance of θ̂ for correlated data

and it requires only a single long run in the simulation experiment (see Section 2).

In this method, the observations are divided into b batches, and an estimator θ̂i,

called a batch statistic, is computed for each batch. The estimator V̂ar(θ̂) of Var(θ̂)

then becomes a function of θ̂1,..., θ̂b. If the b batches do not overlap, the method is

called nonoverlapping batching; otherwise, it is called overlapping batching. Unlike

the observations obtained from b independent simulation short runs, the b batch

statistics are correlated. Hence, analysis of the statistical properties of V̂ar(θ̂) is more

complicated. A single long run is more efficient than multiple short runs because

the initial biased data need to be thrown away only once Throughout this paper, we

assume that the collected data {X1, ..., Xn} have no initial bias. Furthermore, the

data are assumed to be from a stationary process.

Intensive research has been devoted to the batch-means method for θ = µ, but

little for θ = σ2 (probably because mean is a more common performance measure

than variance). Ceylan and Schmeiser (1994) provide conjectures on the consistency

of OBV (overlapping-batch-variance) estimators of Var(S2) by viewing the batch vari-

ance as a batch mean. We implement their ideas to show analytically the consistency

of NBV (nonoverlapping-batch-variance) estimators for data from a linear process.

These results can be extended to OBV estimators.

The rest of this paper is organized as follows. In Section 2, we review the literature

on batching methods and properties of linear processes. In Section 3, we show the

asymptotic bias and variance results of the NBV estimator for linear processes. Here,

S2 is redefined to have denominator n (rather than n − 1) so that S2 is a sample

mean of the squared terms {(Xi − X̄)2, i = 1, ..., n}. Since the variance of S2 with

denominator n − 1 is proportional to the variance with denominator n, one can be

determined from the other. In Section 4, we conclude our results.
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2 Batching methods

2.1 Batch Means

To estimate the population mean µ based on the stationary steady-state data {X1, . . . , Xn}
generated from a stochastic simulation experiment, we can use the sample mean

θ̂ = X̄ =
∑n

i=1 Xi/n as an unbiased estimator for θ = µ. The method of nonoverlap-

ping batch means (NBMs), proposed by Conway (1963), is a classical and conceptually

straightforward method for estimating the variance of the sample mean X̄. NBM di-

vides the sequence of observations into b adjacent and nonoverlapping batches, each

of size m (assuming n = bm for simplicity). The average of data, called the batch

mean, is computed for each batch. The grand average X̄ is the average of the b batch

means. The NBM estimator of Var(X̄) is therefore defined as

V̂ (NBM ) =

∑b
j=1(X̄j − X̄)2

b(b− 1)
=

m2

n(n −m)

n/m∑

j=1

(X̄j − X̄)2, (1)

where X̄j =
∑jm

i=(j−1)m+1 Xi/m is the jth nonoverlapping batch mean. The NBM

method seeks to obtain large batches (i.e., m is large) so that the batch means are

approximately independently and normally distributed, based on the central limit

theorem. The tradeoff, however, is that the number of batches will then be small to

cause large variation in V̂ (NBM ). To balance this tradeoff, Schmeiser (1982) suggests

using ten to thirty batches.

The method of overlapping batch means (OBMs) is introduced in Meketon (1980)

and Meketon and Schmeiser (1984). OBM is similar to NBM, except that it divides n

observations into n−m +1 overlapping batches, each of size m. The OBM estimator

of Var(X̄) is defined as

V̂ (OBM ) =
m

(n − m)(n − m + 1)

n−m+1∑

j=1

(X̄j − X̄)2, (2)

where X̄j =
∑j+m−1

i=j Xi/m is the jth overlapping batch mean. OBM utilizes observa-
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tions more efficiently, as shown in Equation (4). As for the computational demand,

Goldsman and Schmeiser (1997) show that the computation time and storage require-

ments for both NBM and OBM are O(n) and O(1) for any fixed value of m. Song

(1988) and Pedrosa (1994) compute the variance of V̂ (OBM ) for i.i.d. data and for

linear processes, respectively. Song and Schmeiser (1993) rewrite NBM and OBM

variance estimators in quadratic form for algebraic and geometric analysis of their

properties.

Meketon (1980), Meketon and Schmeiser (1984), Goldsman and Meketon (1986),

and Song and Schmeiser (1995) discuss the asymptotic results of batch-means es-

timators for covariance stationary data. Let γ0 =
∑∞

h=−∞ ρh = 1 + 2
∑∞

h=1 ρh and

γ1 =
∑∞

h=−∞ |h|ρh denote the sum and weighted sum of autocorrelations, respectively,

where ρh = Corr(Xi, Xi+h) is the lag-h autocorrelation. If σ2 > 0 and both γ1 and

the fourth population moment exist and are finite,

lim
m→∞

n/m→∞

nm Bias[V̂ (NBM )] = −γ1σ
2 and lim

m→∞

n/m→∞

n3

m
Var[V̂ (NBM )] = 2(γ0σ

2)2. (3)

Furthermore, comparing the asymptotic results for NBM and OBM, we have

lim
m→∞

n/m→∞

Bias[V̂ (OBM )]

Bias[V̂ (NBM )]
= 1 and lim

m→∞

n/m→∞

Var[V̂ (OBM )]

Var[V̂ (NBM )]
=

2

3
. (4)

Combining Equations (3) and (4), we can write

lim
m→∞

n/m→∞

nm Bias[V̂ (Type)] = −cbγ1σ
2 and lim

m→∞

n/m→∞

n3

m
Var[V̂ (Type)] = cv(γ0σ

2)2, (5)

where

cb =





1 if Type = NBM

1 if Type = OBM
, cv =





2 if Type = NBM

4/3 if Type = OBM
. (6)

Using Equation (5), we can derive the mse optimal batch size that minimizes the

asymptotic mse for NBM and OBM: m∗ = n1/3(γ1/γ0)
2/3 + 1 for NBM and m∗ =
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(3n/2)1/3(γ1/γ0)
2/3 + 1 for OBM. Song (1996), Pedrosa (1994), and Yehb (2002) pro-

pose procedures to estimate this asymptotically optimal batch size, which depends

on unknown values of γ0 and γ1.

2.2 Batch Variances

We use simulation to estimate many types of performance measures, with variance σ2

(or standard deviation) being the second most common after means. Ideally we would

have standard errors for every point estimator. The batching method is an easy-to-

implement method for estimating the standard error for a general point estimator θ̂,

not only θ̂ = X̄ (Schmeiser, Avramidis & Hashem, 1990). Ideally the estimator of

the standard error would have good statistical properties, which means that we need

good batch sizes.

Following Ceylan (1994), we redefine the point estimator S2 of variance σ2 as

S2 =

∑n
i=1 (Xi − X̄)2

n
. (7)

By changing the denominator from n− 1 to n, we view the point estimator S2 as the

sample average of the squared terms (Xi−X̄)2, i = 1, ..., n. For the rest of this paper,

the S2 refers to the estimator in Equation (7). The method of batch variances arranges

the n observations into b batches with batch size m and computes the sample variance,

called the batch variance, for each batch. The nonoverlapping batch variance (NBV)

and overlapping batch variance (OBV) are defined as S2
j =

∑jm
i=(j−1)m+1(Xi − X̄)2/m

and S2
j =

∑j+m−1
i=j (Xi − X̄)2/m, respectively. Based on the batching-method logic,

the NBV and OBV estimators of Var(S2) are therefore

V̂ (NBV ) =
m2

n(n − m)

n/m∑

j=1

(S2
j − S2)2 (8)
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and

V̂ (OBV ) =
m

(n − m)(n −m + 1)

n−m+1∑

j=1

(S2
j − S2)2, (9)

respectively. Figure 1 shows how NBVs are computed. Like batch means, the batch-

variance estimator requires O(n) computation and O(1) storage.

HERE IS FIGURE 1

Using these definitions of S2 and S2
j , NBV and OBV estimators, respectively,

are algebraically equivalent to NBM and OBM estimators for the squared terms

(Xi − X̄)2, i = 1, · · · , n. Ceylan and Schmeiser (1994) conjecture that NBV and

OBV estimators have asymptotic results analogous to the NBM and OBM results in

Equation (5) because they view the data process using the squared terms. Let ρ̃h, γ̃0,

and γ̃1 denote the squared term counterparts of ρh, γ0, and γ1, respectively, i.e., ρ̃h =

Corr[(Xi − µ)2, (Xi+h − µ)2], γ̃0 =
∑∞

h=−∞ ρ̃h, and γ̃1 =
∑∞

h=−∞ |h|ρ̃h. Then Ceylan

and Schmeiser’s conjecture is as follows: if (α4 − 1)σ4 > 0, γ̃1 < ∞, and E(X8) < ∞,

lim
m→∞

n/m→∞

nm Bias[V̂ (Type)] = −cbγ̃1[(α4 − 1)σ4] ,

lim
m→∞

n/m→∞

n3m−1 Var[V̂ (Type)] = cv

[
γ̃0(α4 − 1)σ4

]2
, (10)
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where cb and cv are as defined in Equation (6). Notice that Var(Xi−µ)2 = (α4−1)σ4

is the analogous value of Var(Xi) for batch means. Ceylan (1994) empirically studies

the normal AR(1) data to support this conjecture for the OBV estimator in the case of

dependent data. We prove in Section 3 that this conjecture holds for NBV estimators

with a linear data process (Section 2.3).

Ceylan (1994) also investigates two other variations of the overlapping batch vari-

ances, in which the grand average X̄ is replaced by (i) the batch mean X̄j and (ii)

the true mean µ. Her work shows that the true mean is the best replacement, but

when it is unknown (most cases), the grand average is a better choice than the batch

mean, because it converges to µ more rapidly.

2.3 Linear Processes

Simulation output data are usually correlated and time dependent, for example, wait-

ing times for parts in a queue. Here, we review linear processes of time series data in

general. Several time-series models, such as autoregressive and moving average, are

special cases of the linear process.

Random data {Xi, i = 1, 2, ...} are said to follow a linear process if each component

can be expressed in the form

Xi =

∞∑

h=−∞

αhεi−h, (11)

where the αh’s are real weights and {εi} is a sequence of i.i.d. random variables with

mean µε, variance σ2
ε , and kurtosis α4,ε. Without loss of generality, we may assume

µε = 0 and hence E(Xi) = 0.

Under mild conditions, the linear process is stationary up to order four. That

is, E(XiXi+rXi+sXi+t) depends on r, s, and t, but not i, for any i, r, s, t. Priestley

(1981) shows that if
∑∞

j=−∞ α2
j < ∞, the linear process is covariance stationary (i.e.,
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stationary up to order 2) with lag-h autocovariance

Rh = E(XiXi+h) = σ2
ε

∞∑

j=−∞

αjαj+h. (12)

Furthermore, if the αj ’s are absolutely summable (i.e.,
∑∞

j=−∞ |αj| < ∞), then the

linear process is stationary up to order four with

E[XiXi+rXi+sXi+t] = E[XiXi+r ]E[Xi+sXi+t] + E[XiXi+s]E[Xi+rXi+t]

+E[XiXi+t]E[Xi+rXi+s] + k4(r, s, t), (13)

where

k4(r, s, t) = (α4,ε − 3)σ4
ε

∞∑

h=−∞

αhαh+rαh+sαh+t (14)

is the fourth joint cumulant of the joint distribution of Xi, Xi+r , Xi+s, and Xi+t

(Rosenblatt, 1985, p. 35, Priestley, 1981, p. 325, and Fuller, 1996, p. 315). Combin-

ing Equations (13) and (14), we have

E[XiXi+rXi+sXi+t] = (α4,ε − 3)σ4
ε

∞∑

h=−∞

αhαh+rαh+sαh+t

+RrRt−s + RsRt−r + RtRs−r . (15)

The definition of cumulant is based on Kendall and Stuart (1977, p. 86) and Bickel

and Doksum (2001, p. 460). In Section 3, we discuss statistical properties of the

NBV estimator for simulation output data from a linear process.

Autoregressive and moving-average processes are special cases of the linear process.

For example, the first-order autoregressive process

Xi = φXi−1 + εi, |φ| < 1,

with zero mean can be expressed as a linear process with weights αh = φ|h| for h ≤ i
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and 0, otherwise. The first-order moving-average process with the form

Xi = δεi−1 + εi, |δ| < ∞,

is also a linear process with weights α0 = 1, α1 = δ, and αh = 0 for h > 1. Both

processes satisfy the absolutely summable condition:
∑∞

j=−∞ |αj| < ∞. Furthermore,

if the white noise εi follows a normal distribution, both processes are stationary

Gaussian up to any finite order.

3 Statistical properties of NBV estimators

In simulation output analysis, the statistical properties of batch-mean estimators have

been studied extensively, but little attention has been devoted to batch variances.

Here, we analyze here the asymptotic properties of NBV estimators for simulation

output data from a linear process (Section 2.3). We show that the asymptotic results

for NBV estimators agree with those for NBM estimators. Specifically, we show that

lim
m→∞

n/m→∞

nm Bias[V̂ (NBV )] = −γ̃1[(α4 − 1)σ4] , (16)

lim
m→∞

n/m→∞

n3m−1Var[V̂ (NBV )] = 2[ γ̃0(α4 − 1)σ4 ]2. (17)

Both NBV and NBM have the same convergence rate and the same values of cb and

cv (Equation 5). The other terms in the asymptotic-result formulas depend on the

data process. Recall that the sample variance S2 =
∑n

i=1(Xi − X̄)2/n is the sample

average of the quadratic data {(Xi − X̄)2}. Therefore, the NBV analogous values

of the NBM population variance σ2 is Var[(Xi − µ)2] = (α4 − 1)σ4 (the limiting

value of Var[Xi − X̄ ]2 as n → ∞). The NBV analogous values of γ0 and γ1 for

NBM are γ̃0 =
∑∞

h=−∞ ρ̃(h) and γ̃1 =
∑∞

h=−∞ |h|ρ̃(h) where ρ̃(h) is the limiting

lag-h autocorrelation of the quadratic data {(Xi − X̄)2, i = 1, ..., n}. Notice that

Equations (16) and (17) imply that V̂ (NBV ) is an mse-consistent estimator of Var[S2].

First, consider the special case of i.i.d. data X1, ..., Xn. Result 1 shows that
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Equations (16) and (17) are valid for i.i.d. data.

RESULT 1 Suppose that X1, ..., Xn are i.i.d. with (α4 − 1)σ4 < ∞. Then,

lim
m→∞

n/m→∞

nm Bias[V̂ (NBV )] = 0 , (18)

lim
m→∞

n/m→∞

n3m−1Var[V̂ (NBV )] = 2
[
(α4 − 1)σ4

]2
. (19)

Equations (18) and (19) match Equations (16) and (17), respectively, because for

i.i.d. data, γ̃1 = 0 and γ̃0 = 1. The proof is straightforward.

We now discuss the asymptotic properties of NBV estimators for the linear process.

Result 2 calculates the asymptotic bias of NBV estimators for the linear process and

Result 3 calculates the asymptotic variance. Through out this section, we assume

that the number of observations is a multiple of the batch size, i.e., n = bm.

RESULT 2 Suppose that the observations {Xi, i = 1, ..., n} are from a linear process

whose weights satisfy
∑∞

h=−∞ |hαh| < ∞. Then, for n large,

nm Bias[V̂ (NBV )]

≈ −2(α4,ε − 3)σ4
ε

n − m

[
nm

n−1∑

h=m

∞∑

j=−∞

α2
jα

2
j+h + n

m−1∑

h=1

∞∑

j=−∞

hα2
jα

2
j+h −m

n−1∑

h=1

∞∑

j=−∞

hα2
jα

2
j+h

]

− 4

n − m

[
nm

n−1∑

h=m

R2
h + n

m−1∑

h=1

hR2
h − m

n−1∑

h=1

hR2
h

]
.

Therefore,

lim
m→∞

n/m→∞

nm Bias
[
V̂ (NBV )

]
= −2(α4,ε − 3)σ4

ε

∞∑

h=1

∞∑

j=−∞

hα2
jα

2
j+h − 4

∞∑

h=1

hR2
h

= −γ̃1[(α4 − 1)σ4] .

Proof:

Assume, without loss of generality, that µ = 0. By the definition of NBV in
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Equation (8),

V̂ (NBV ) =
1

b(b− 1)

b∑

j=1

(S2
j − S2)2 =

1

b(b− 1)

[ b∑

j=1

S4
j − bS4

]
.

Now consider the batch variance S2
1 :

S2
1 = m−1

m∑

i=1

(Xi − X̄)2 = m−1

m∑

i=1

[
(Xi − µ) − (X̄ − µ)

]2

= m−1
m∑

i=1

(Xi − µ)2 − (X̄ − µ)2.

By the law of large numbers, random variable (X̄ −µ), as well as (X̄ −µ)2, converges

to zero in probability, as n goes to infinity. Therefore, the first term dominates.

Define S2
j (µ) =

∑jm
i=(j−1)m+1(Xi − µ)2/m and S2(µ) =

∑n
i=1(Xi − µ)2/n. As n goes

to infinity, S2
j − S2

j (µ) and S2 − S2(µ) converge to zero in probability. Hence, in the

rest of the proof, we approximate S2
j and S2 by S2

j (µ) and S2(µ), respectively.

Since
∑∞

h=−∞ |hαh| < ∞, we have
∑∞

h=−∞ |αh| < ∞ and hence the linear process

is stationary up to order ≥ 4. This implies that E[S4
j ] is the same for all j. Hence,

E[V̂ (NBV )] =
E[S4

1 ] − E[S4]

b − 1

≈ E[S4
1(µ)] − E[S4(µ)]

b − 1
=

m

n − m

{
E[S4

1(µ)] − E[S4(µ)]

}
.

Therefore,

nmBias[V̂ (NBV )] = nm

{
E(V̂ (NBV )) − Var(S2)

}

= nm

{
m

n − m
E(S4

1) −
n

n − m
E(S4) + [E(S2)]2

}

≈ nm2

n − m
E[S4

1(µ)] − n2m

n − m
E[S4(µ)] + nm

{
E[S2(µ)]

}2

=
nm2

n −m
· 1

m2

[
(α4,ε − 3)σ4

ε

m∑

s=1

m∑

t=1

∞∑

j=−∞

α2
jα

2
j+s−t + m2R2

0 + 2

m∑

s=1

m∑

t=1

R2
s−t

]
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− n2m

n − m
· 1

n2

[
(α4,ε − 3)σ4

ε

n∑

s=1

n∑

t=1

∞∑

j=−∞

α2
jα

2
j+s−t + n2R2

0 + 2

n∑

s=1

n∑

t=1

R2
s−t

]

+nmR2
0

=
n

n −m

[
(α4,ε − 3)σ4

ε

m∑

s=1

m∑

t=1

∞∑

j=−∞

α2
jα

2
j+s−t + 2

m∑

s=1

m∑

t=1

R2
s−t

]

− m

n − m

[
(α4,ε − 3)σ4

ε

n∑

s=1

n∑

t=1

∞∑

j=−∞

α2
jα

2
j+s−t + 2

n∑

s=1

n∑

t=1

R2
s−t

]
.

Let h = s − t. Then

m∑

s=1

m∑

t=1

∞∑

j=−∞

α2
jα

2
j+s−t = m

∞∑

j=−∞

α4
j + 2

m−1∑

h=1

∞∑

j=−∞

(m − h)α2
jα

2
j+h .

Similarly,

m∑

s=1

m∑

t=1

R2
s−t = mR2

0 + 2
m−1∑

h=1

(m− h)R2
h.

Therefore,

nmBias[V̂ (NBV )]

≈ n

n −m

{
(α4,ε − 3)σ4

ε

[
m

∞∑

j=−∞

α4
j + 2

m−1∑

h=1

∞∑

j=−∞

(m − h)α2
jα

2
j+h

]

+2

[
mR2

0 + 2

m−1∑

h=1

(m − h)R2
h

] }

− m

n − m

{
(α4,ε − 3)σ4

ε

[
n

∞∑

j=−∞

α4
j + 2

n−1∑

h=1

∞∑

j=−∞

(n − h)α2
jα

2
j+h

]

+2

[
nR2

0 + 2
n−1∑

h=1

(n − h)R2
h

]}

=
2n

n −m

[
(α4,ε − 3)σ4

ε

m−1∑

h=1

∞∑

j=−∞

(m − h)α2
jα

2
j+h + 2

m−1∑

h=1

(m− h)R2
h

]

− 2m

n − m

[
(α4,ε − 3)σ4

ε

n−1∑

h=1

∞∑

j=−∞

(n − h)α2
jα

2
j+h + 2

n−1∑

h=1

(n − h)R2
h

]

13



=
2(α4,ε − 3)σ4

ε

n − m

[
nm

m−1∑

h=1

∞∑

j=−∞

α2
jα

2
j+h − nm

n−1∑

h=1

∞∑

j=−∞

α2
jα

2
j+h

−n

m−1∑

h=1

∞∑

j=−∞

hα2
jα

2
j+h + m

n−1∑

h=1

∞∑

j=−∞

hα2
jα

2
j+h

]

+
4

n −m

[
nm

m−1∑

h=1

R2
h − nm

n−1∑

h=1

R2
h − n

m−1∑

h=1

hR2
h + m

n−1∑

h=1

hR2
h

]

=
−2(α4,ε − 3)σ4

ε

n − m

[
nm

n−1∑

h=m

∞∑

j=−∞

α2
jα

2
j+h + n

m−1∑

h=1

∞∑

j=−∞

hα2
jα

2
j+h

−m
n−1∑

h=1

∞∑

j=−∞

hα2
jα

2
j+h

]
− 4

n −m

[
nm

n−1∑

h=m

R2
h + n

m−1∑

h=1

hR2
h − m

n−1∑

h=1

hR2
h

]
.

Notice that under the condition
∑∞

h=−∞ |hαh| < ∞, αh and Rh are O(|h|−2−δ) for

δ > 0, implying that
∑∞

h=1

∑∞
j=−∞ α2

jα
2
j+h,

∑∞
h=1

∑∞
j=−∞ hα2

jα
2
j+h,

∑∞
h=1 R2

h and
∑∞

h=1 hR2
h are all finite. Therefore, as m → ∞ and simultaneously n/m → ∞,

lim
m→∞

n/m→∞

nm Bias[V̂ (NBV )] = −2(α4,ε − 3)σ4
ε

∞∑

h=1

∞∑

j=−∞

hα2
jα

2
j+h − 4

∞∑

h=1

hR2
h

= −2

∞∑

h=1

h

[
(α4,ε − 3)σ4

ε

∞∑

j=−∞

α2
jα

2
j+h + 2R2

h

]

= −2
∞∑

h=1

h

{
(α4,ε − 3)σ4

ε

∞∑

j=−∞

α2
jα

2
j+h + 2R2

h + R2
0 − R2

0

}

= −2
∞∑

h=1

h

{
E[X2

i X2
i+h] − E[X2

i ]E[X2
i+h]

}
= −2

∞∑

h=1

h Cov(X2
i , X2

i+h)

= −2
∞∑

h=1

h ρ̃(h) Var(X2
i ) = −2(α4 − 1)σ4

∞∑

h=1

h ρ̃(h) = −γ̃1(α4 − 1)σ4. �

Result 2 verifies that Equation (16) remains valid for dependent data from a linear

process. Result 2 also indicates that NBV is asymptotically unbiased with order nm.

Having established conditions sufficient to ensure that the NBV estimator is as-

ymptotically unbiased, we now turn our attention to convergence behavior for the

variance of the NBV estimator. Result 3 follows from the asymptotic independence

and normality of batched variances. It shows that the NBV variance goes to zero

14



with rate n3/m (the same convergence rate as NBM) and conforms to Equation (17).

RESULT 3 Suppose that the observations {Xi, i = 1, ..., n} are from a linear process

whose weights satisfy
∑∞

h=−∞ |hαh| < ∞. Then

lim
m→∞

n/m→∞

n3

m
Var[V̂ (NBV )] = 2

[
(α4,ε − 3)R2

0 + 2

∞∑

h=−∞

R2
h

]2

= 2
[
γ̃0(α4 − 1)σ4

]2
.

Proof:

Recall that

V̂ (NBV ) =
m2

n(n − m)

n/m∑

j=1

(S2
j − S2)2 .

Under condition
∑∞

h=−∞ |hαh| < ∞, the limiting distribution of n1/2(S2 − σ2) is

normal with mean zero and variance (α4,ε − 3)R2
0 + 2

∑∞
h=−∞ R2

h (Fuller, 1996, p.

333). That is, as m and n/m go to infinity simultaneously,

√
n(S2 − σ2)

D−→ N
(
0, (α4,ε − 3)R2

0 + 2
∞∑

h=−∞

R2
h

)

and

√
m(S2

j − σ2)
D−→ N

(
0, (α4,ε − 3)R2

0 + 2
∞∑

h=−∞

R2
h

)
.

Here “
D→” means convergence in distribution. Since batch variances are asymptoti-

cally independent and normally distributed, as n and n/m are large,

m
∑n/m

j=1 (S2
j − S2)2

(α4,ε − 3)R2
0 + 2

∑∞
h=−∞ R2

h

∼ χ2
n
m
−1,

where χ2
ν denotes the chi-square distrubituion with ν degrees of freedom. Therefore,

Var[V̂ (NBV )] = Var



 m2

n(n − m)

n/m∑

j=1

(S2
j − S2)2





15



≈ m4

n2(n − m)2
·
[
(α4,ε − 3)R2

0 + 2
∑∞

h=−∞ R2
h

]2

m2
· Var

[
m

∑n/m
j=1 (S2

j − S2)2

(α4,ε − 3)R2
0 + 2

∑∞
h=−∞ R2

h

]

=
2m

n2(n − m)

[
(α4,ε − 3)R2

0 + 2
∞∑

h=−∞

R2
h

]2

.

Recall that R2
0 =

(
σ2

ε

∑∞
j=−∞ α2

j

)2

in Equation (12), and from Anderson (1994, p.

468), we have
(
σ2

ε

∑∞
j=−∞ α2

j

)2

= σ4
ε

∑∞
h=−∞

∑∞
j=−∞ α2

jα
2
j+h. Therefore, as m −→ ∞

and n/m −→ ∞,

lim
m→∞

n/m→∞

n3

m
Var[V̂ (NBV )] = 2

[
(α4,ε − 3)R2

0 + 2
∞∑

h=−∞

R2
h

]2

= 2

[
(α4,ε − 3)σ4

ε

∞∑

h=−∞

∞∑

j=−∞

α2
jα

2
j+h + 2

∞∑

h=−∞

R2
h

]2

= 2

{
∞∑

h=−∞

[
(α4,ε − 3)σ4

ε

∞∑

j=−∞

α2
jα

2
j+h + 2R2

h

]}2

= 2

{ ∞∑

h=−∞

[
(α4,ε − 3)σ4

ε

∞∑

j=−∞

α2
jα

2
j+h + 2R2

h + R2
0 − R2

0

] }2

= 2

{ ∞∑

h=1

(
E[X2

i X2
i+h] − E[X2

i ]E[X2
i+h]

) }2

= 2

[
∞∑

h=−∞

Cov(X2
i , X2

i+h)

]2

= 2

[
∞∑

h=−∞

ρ̃h Var(X2
i )

]2

= 2
[
γ̃0(α4 − 1)σ4

]2
. �

Results 2 and 3 show that for linear processes, the bias and variance of the NBV

estimator go to zero at rates nm and n3/m, respectively. These convergence rates are

the same as the NBM estimator rates. Schmeiser et al. (1990) also provide sufficient

conditions to ensure the unbiasedness of batch statistics. Often, these conditions hold

only in the limit as the batch size m and number b of batches grow large.
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3.1 Results of NBV Applied to OBV

Results 2 and 3 show that NBV behaves in a manner similar to NBM. It follows

that NBV applied to the data process {Xi} is equivalent to NBM applied to the

data process {(Xi − X̄)2}. Since OBM is essentially the same as NBM except for

the overlapping algorithm, it applies to the data process {(Xi − X̄)2} as well as the

data process {Xi}. Meketon and Schmeiser (1984) and Song and Schmeiser (1995)

established that for the same assumptions and batch size, asymptotically OBM has

the same mean as NBM and only 2/3 the asymptotic variance because of different

batching logic. Similarly, NBM and OBM satisfy the asymptotic relationships:

lim
m→∞

m/n→0

Bias[V̂ (OBV )]

Bias[V̂ (NBV )]
= 1 and

Var[V̂ (OBV )]

Var[V̂ (NBV )]
=

2

3
. (20)

Moreover, based on the limiting bias and variance of NBV in Equations (16) and (17),

it follows that

lim
m→∞

m/n→0

nm Bias[V̂ (OBV )] = −γ̃1(α4 − 1)σ4, (21)

and

lim
m→∞

m/n→0

n3

m
Var[V̂ (OBV )] =

4

3
[γ̃0(α4 − 1)σ4]

2
. (22)

An empirical study in Ceylan (1994) conforms closely to Equations (20) to (22). Yeha

(2002) also proves that the OBV results are valid for the MA(1) process.

3.2 The Asymptotically Optimal Batch Size

Using the asymptotic bias and variance results, we can compute the optimal batch

size that minimizes the asymptotic mse. For large values of m and n/m, the bias and

variance of NBV and OBV estimators are approximately

Bias[V̂ (NBV )] ≈ −(nm)−1γ̃1(α4 − 1)σ4,
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Var[V̂ (NBV )] ≈ 2mn−3[γ̃0(α4 − 1)σ4]2,

and

Bias[V̂ (OBV )] ≈ −(nm)−1γ̃1(α4 − 1)σ4,

Var[V̂ (OBV )] ≈ (4/3)mn−3[γ̃0(α4 − 1)σ4]2.

Therefore, the mse for NBV and OBV, respectively, is approximately

mse[V̂ (NBV )] ≈
(

γ̃2
1

n2m2
+

2mγ̃2
0

n3

)
[(α4 − 1)σ4]2 , (23)

mse[V̂ (OBV )] ≈
(

γ̃2
1

n2m2
+

4mγ̃2
0

3n3

)
[(α4 − 1)σ4]2 . (24)

The asymptotic optimal batch sizes m̂∗ that minimize Equations (23) and (24) are

listed in Table 1.

Table 1 summarizes the asymptotic results for batch-mean and batch-variance es-

timators. Because the batch-mean estimator is the batch-variance estimator applied

to the data {(Xi − X̄)2}, which converges to the process {(Xi − µ)2}, substitution

of Var[(Xi − µ)2] = (α4 − 1)σ4 for σ2, γ̃0 for γ0, and γ̃1 for γ1 in the batch-mean

asymptotic results yields the batch-variance asymptotic results. Notice that the as-

ymptotically optimal batch sizes for batch-mean and batch-variance estimators are

different because the values of γi and γ̃i are different for i = 0, 1.

HERE IS TABLE 1
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4 Conclusions

This paper concerns the measurement of performance via the sample variance, an

estimate of the population variance, with the denominator being the number of ob-

servations and the data being correlated and identically distributed. In contrast to

the estimation of the variance of the sample mean, which has been the topic of inten-

sive research, the variance of the sample variance has received little attention. The

batching method estimates the variance of the sample variance by dividing the obser-

vations into several batches, computing the batch variances (the sample variances for

each batch), and computing the estimator as a function of the batch variances. Two

variants of the estimator are considered: the NBV (for non-overlapping batches) and

the OBV (for overlapping batches) .

We provide analytical results for NBV estimators, assuming that the data are from

a linear process. By viewing the sample variance as a sample mean of the squared

terms, we show that the asymptotic results for the batch-variance method and the

batch-mean method are analogous. We consider three aspects of the asymptotic

results: convergence rates; constant multipliers; and data properties, which determine

the second multiplier. We show that 1. Both methods have the same convergence

rates and constant multipliers, and 2. Because the data properties are analogous,

one principle applies consistently to the second multiplier in the batch-mean and

batch-variance results. Moreover, both of these asymptotic results can be extended

to OBV estimators. If the OBV to NBV asymptotic bias and variance ratios for batch

variances are the same as for batch means, the OBV and OBM estimators behave

analogously. Specifically, the OBV bias is the same as the NBV bias and the OBV

variance is only 2/3 of the NBV variance.

This paper points to future work in three areas: (i) estimation of the asymp-

totically optimal batch size (a function of unknown γ̃0 and γ̃1) for NBV and OBV

estimators, (ii) extension of our results to batch statistics that can be viewed as a

batch-mean estimator ( e.g., quantile estimators), and (iii) development of proofs for

the OBV results.
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Table 1. Comparisons of batch-mean and batch-variance estiamtors

Figure 1. Diagram of the NBV method
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Estimator Type

Property NBM OBM NBV OBV

nmBias −σ
2
γ1 −σ

2
γ1 −(α4 − 1)σ4

γ̃1 −(α4 − 1)σ4
γ̃1

n
3
m

−1Var 2
(
σ

2
γ0

)2 4
3

(
σ

2
γ0

)2
2[(α4 − 1)σ4

γ̃0]
2 4

3 [(α4 − 1)σ4
γ̃0]

2

m̂
∗ 1+

[
n

(
γ1

γ0

)2
]1/3

1 +

[
3n
2

(
γ1

γ0

)2
]1/3

1 +

[
n

(
eγ1

eγ0

)2
]1/3

1 +

[
3n
2

(
eγ1

eγ0

)2
]1/3
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