
Stochastic Root Finding

via Retrospective Approximation

Huifen Chen

Department of Industrial Engineering

Chung Yuan Christian University

Chung Li, TAIWAN

E-mail: huifen@cycu.edu.tw

Bruce W. Schmeiser

School of Industrial Engineering

Purdue University

West Lafayette, Indiana 47907-1287, U.S.A.

E-mail: bruce@purdue.edu

ABSTRACT

Given a user-provided Monte Carlo simulation procedure to estimate a function at any specified

point, the stochastic root-finding problem is to find the unique argument value to provide a specified

function value. To solve such problems, we introduce the family of Retrospective Approximation

(RA) algorithms. RA solves, with decreasing error, a sequence of sample-path equations that are

based on increasing Monte Carlo sample sizes. Two variations are developed: IRA, in which each

sample-path equation is generated independently of the others, and DRA, in which each equation

is obtained by appending new random variates to the previous equation. We prove that such algo-

rithms converge with probability 1 to the desired solution as the number of iterations grows, discuss

implementation issues to obtain good performance in practice without tuning algorithm parame-

ters, provide experimental results for an illustrative application, and argue that IRA dominates

DRA in terms of the generalized mean squared error.

1

1 INTRODUCTION

The root-finding problem is to find the unique root x∗ of the equation g(x∗) = γ, where g : <d → <d.

We consider stochastic root-finding problems (SRFPs), the case where g(x) can only be estimated

by a consistent estimator ȳ(x) for any given value of x. SRFPs arise in designing stochastic systems

with computer simulation: γ is the desired system performance, x is the value of a design variable,

g(x) is the corresponding system performance, and ȳ(x) is the estimated performance obtained

from a user-provided Monte Carlo simulation procedure. More specifically, the SRFP is defined as

follows.

Stochastic Root Finding Problem (SRFP):

Given:

(a) a constant vector γ ∈ <d ,

(b) a (computer) procedure for generating, for any x ∈ <d, a d-dimensional consistent

estimate ȳ(x) of g(x).

Find: the unique root x∗ satisfying g(x∗) = γ using only the estimator ȳ.

Examples of SRFPs can be found in Chen and Schmeiser (1994a) and in Section 5. As an

illustrative example, we consider here a one-dimensional problem arising in statistical inference:

Compute the analogue of a Student’s t critical value when the independent observations arise from

an arbitrary distribution function, say FV , rather than from the normal distribution. Specifically:

given FV , a sample size n, and a probability 1 − α, the problem is to determine the critical

value t1−α,n such that P{T ≤ t1−α,n} = 1 − α, where T =
√

n(V̄ − µ)/S, V̄ = n−1
∑n

j=1 Vj,

S2 = (n− 1)−1
∑n

j=1(Vj − V̄)2, the observations V1, V2, ..., Vn are sampled independently from FV ,

and µ = E(V) assumed in the null hypothesis. This problem is an SRFP with true root x∗ = t1−α,n,

target γ = 1−α, and function g(x) = P(T ≤ x). The user-written computer procedure ȳ(x) is the

sample average of y1(x), ..., ym(x), where yj(x) = I{Tj ≤ x}, Tj is the jth observation of T , and I

is the indicator function. That is, the computer procedure mimics the process: Each observation

yj(x) is obtained by generating one random sample of size n from FV , computing the value of Tj,

and returning 1 if Tj ≤ x and 0 otherwise.

This root-finding problem could be solved deterministically using numerical quadrature. Rather

than ȳ(x), the user-provided procedure would compute g(x) =
∫
∞

−∞
...

∫
∞

−∞
I{T ≤ x}dFV (v1)...dFV (vn),

2

probably using an off-the-shelf quadrature routine. This value, in turn, could be given to an off-

the-shelf deterministic root-finding routine. Even for this simple example, and even for small values

of n, both simplicity of code and computing time favor the stochastic approach. Of course, for the

important normal-distribution case, specialized deterministic routines are quite efficient.

We are interested in black-box algorithms to solve the SRFP. Given such algorithms, a prac-

titioner needs only to provide a computer simulation procedure that provides the estimator ȳ(x)

of g(x) by mimicking the behavior of the modeled system. Often, as in this example, ȳ(x) is an

unbiased sample average, but more generally, such as in problems involving steady-state behavior of

stochastic systems, ȳ(x) could be biased. Even more generally, ȳ(x) need not be a sample average.

The concepts necessary to develop such simulation procedures are discussed in standard textbooks,

for example Law and Kelton (2000) and Banks et al. (1996).

The general problem is to solve d equations in d unknowns. As with deterministic root finding,

many interesting problems lie in a single dimension. We consider only d = 1 in detail. The ideas,

but not all of the details, of this paper extend to multiple dimensions, e.g., Chen (1998).

We propose, in Section 2, a family of Retrospective Approximation (RA) algorithms, which it-

eratively solve a sequence of sample-path approximation problems with increasing sample sizes. In

each iteration, the sample-path approximation problem is solved to within an error tolerance; the

root estimator is then a function of those solutions. Using results from M-estimators, we show in

Section 3 that, under proper conditions, the RA root estimator converges to the true root with prob-

ability one (w.p.1). Section 4 is a discussion of implementation issues. Section 5 provides numerical

results for two specific RA algorithms and empirically compares RA to stochastic-approximation

algorithms (Robbins and Monro 1951), a classic stochastic root-finding approach. The family of

RA algorithms has been discussed previously in Chen (1994) and Chen and Schmeiser (1994b).

That an algorithm converges is not sufficient to make the algorithm interesting; the finite-sample

convergence can be so slow as to make the algorithm impractical, even when the asymptotic con-

vergence rate is quite good. Our empirical experience with various retrospective approximation

algorithms, however, has been good. Section 5.2 shows that RA yields root estimates with much

smaller mean squared error (mse) than stochastic approximation for practical numbers of replica-

tions. Work continues on stochastic approximation, although usually for optimization rather than

root finding (Andradóttir 1992, Fu 1994, Fu and Hill 1997, L’Ecuyer et al. 1994, and L’Ecuyer and

3

Glynn 1994). Simon (1998) proposes a natural stochastic root-finding procedure that iteratively

solves a sequence of approximation functions of g(x), assuming that the solution can be determined

exactly. A given approximation function depends on all the past solutions and their function es-

timates. This procedure converges if the root-finding function g is continuous, the estimator ȳ is

uniformly consistent, and the approximation function satisfies the “cluster point property.” Despite

the convergence proof, it is not clear how to construct an approximation function that satisfies the

cluster point property, is easy to implement, and is robust with respect to the algorithm parameters.

2 RETROSPECTIVE APPROXIMATION

Here we develop RA algorithms. In the following five subsections we discuss sample-path approx-

imations, two variations of RA algorithms, the rationale behind the RA logic, estimators for the

variance of the retrospective root estimators, and retrospective approaches for stochastic optimiza-

tion.

2.1 Sample-Path Approximations

Fundamental to the retrospective approach is the concept of the sample-path approximation to the

function g. At any point x, this approximation is simply ȳ(x). The approximation to g is obtained

by using common random numbers for every point x. We let ω = {ω1, ..., ωm} denote the random

numbers used to obtain ȳ(x) = ȳm(x; ω). Holding ω constant over all points x yields a sample-

path approximation ȳm(·; ω) to g. Although given ω the sample-path approximation ȳm(x; ω) is

a deterministic function of x, we need not write it explicitly; rather we calculate its value only at

each desired point x.

The sample-path equation

ȳm(x∗(ω) ; ω) = γ (1)

defines the random root x∗(ω), which is an estimate of the true root x∗. We call x∗(ω) the

retrospective root.

For the example in Section 1, the random numbers ωj are used to generate the jth observation

yj(x) = y(x; ωj) = I{Tj(ωj) ≤ x}. Given independently generated random numbers ω1, ..., ωm, the

4

sample-path equation is

ȳm(x∗(ω); ω) = m−1

m∑

j=1

y(x∗(ω); ωj) = m−1

m∑

j=1

I{Tj(ωj) ≤ x∗(ω)} = 1− α . (2)

Despite the uniqueness of the true root t1−α,n of the strictly increasing, continuous (assuming FV

is continuous) function g, the retrospective root might not be unique or might not exist. The

sample-path equation has many roots if 1−α lies on a step and has no root otherwise. In the latter

case, there is, however, a unique point x∗(ω) at which ȳm crosses 1−α. In Section 3.1 we relax the

definition of retrospective roots to allow “crossing” roots.

2.2 RA Algorithms

RA iteratively solves approximately a sequence of sample-path equations

ȳmi
(x∗(ωi) ; ωi) = γ (3)

for i = 1, 2,..., where the components of ωi = {ωi,1, ..., ωi,mi
} are generated independently. RA

uses a strictly increasing sample-size sequence {mi}. At each retrospective iteration i, RA uses

a numerical root-finding algorithm to evaluate ȳmi
(·; ωi) at one or more x values to find a retro-

spective solution x(ω1, ..., ωi) that is close to the retrospective root x∗(ωi). In particular, RA uses

the retrospective-iteration stopping criterion |x(ω1, ..., ωi) − x∗(ωi)| < εi, where {εi} is a positive

sequence converging to zero. Possibly {εi} is a function of the previous retrospective solutions and

therefore random; in this case we assume only w.p.1 convergence to zero. One approach to satisfy

the stopping criterion is to bound the retrospective root and use bisection search until the stopping

criterion is satisfied.

The values of x at which the sample-path approximation ȳmi
(·; ωi) is evaluated by the numer-

ical root-finding algorithm, as well as the number of such x values, are random, depending upon

the particular sample-path equation and (less directly) any information from earlier retrospective

iterations. For example, in our implementation the numerical root-finding algorithm uses an initial

x computed from earlier sample-path equations. In fact, the computational efficiency of RA arises

because small sample sizes in the early retrospective iterations are used to find the region of the

root before more expensive and precise computations are performed with larger sample sizes in the

5

later retrospective iterations.

Two strategies seem natural for seeding the retrospective iterations. In Dependent RA (DRA) all

retrospective iterations use the same random-number stream. Therefore, the retrospective iterations

are dependent because the mi−1 observations ωi−1 in the retrospective iteration i− 1 are the first

mi−1 observations of the mi observations ωi in retrospective iteration i. In Independent RA (IRA)

all retrospective iterations are independently seeded. Therefore, the observations from iteration

to iteration are independent, with retrospective iteration i containing mi new observations ωi

independent of ω1, ..., ωi−1.

After i retrospective iterations, the root estimator x̄(ω1, ..., ωi) differs between DRA and IRA.

In DRA,

x̄(ω1, ..., ωi) = x(ω1, ..., ωi), (4)

the ith retrospective solution. In IRA, the root estimator is the weighted average of the solutions

x(ω1), ..., x(ω1, ..., ωi):

x̄(ω1, ..., ωi) =
i∑

j=1

mj x(ω1, ..., ωj) /
i∑

j=1

mj. (5)

Section 5.1 empirically compares the efficiency of DRA and IRA algorithms.

Specifically, RA algorithms work as follows.

RA Algorithms:

Components:

1. an initial sample size m1 and a rule for successively increasing mi for i ≥ 2,

2. a rule for computing an error-tolerance sequence {εi} that goes to zero w.p.1, and

3. a numerical root-finding method for solving sample-path equation (3) to within a

specified error εi for each i.

Find: the root x∗.

Step 0. Initialize the retrospective iteration number i = 1. Set m1 and ε1.

Step 1. Generate ωi. For IRA, ωi is mi new observations, generated independently of

ωi−1. For DRA, ωi is obtained by generating mi − mi−1 new independent

observations and appending them to ωi−1.

6

Step 2. Use the numerical method to solve the deterministic sample-path equation (3)

to obtain a retrospective solution x(ω1, ..., ωi) that satisfies |x(ω1, ..., ωi) −
x∗(ωi)| < εi.

Step 3. Compute the root estimator x̄(ω1, ..., ωi) using Equation (4) for DRA or (5)

for IRA.

Step 4. Compute mi+1 and εi+1. Set i←− i + 1 and go to Step 1.

In addition to choosing between DRA and IRA, a specific RA algorithm is obtained by choos-

ing the three components: sample-size rule, error-tolerance sequence, and numerical root-finding

method. We discuss these choices, as well as stopping rules (for the entire RA algorithm), in

Section 4.

2.3 RA Rationale

Here we briefly discuss the rationale of the RA algorithm structure. We have three criteria for

algorithm development: practical computational efficiency, guaranteed convergence to the root x∗,

and a standard-error estimator for the root estimator. The first two underlie the discussion here,

and the last we discuss in the next subsection.

RA algorithms use, by definition, multiple iterations with increasing sample sizes and decreasing

error tolerances. The key idea for practical computational efficiency is that previous retrospective

iterations, based upon small sample sizes, can provide information for efficient numerical solution

in future retrospective iterations. Computing in early iterations is inexpensive because sample

sizes are small; computing in later iterations is inexpensive because the approximate location of

the retrospective root is known. Also for efficiency, the error tolerances need to be appropriately

sized: there is no need to chase randomness. In earlier retrospective iterations the retrospective

root has larger sampling error (due to smaller sample sizes), so the error tolerances should be larger;

later the retrospective root has less sampling error, so the error tolerances should be smaller. The

second criterion—guaranteeing convergence—is obtained by approaching two limits simultaneously:

the sample-path approximation ȳm approaches g, because of increasing sample size m, and the

retrospective solutions approach the retrospective roots, because the error tolerances converge to

zero.

7

Two other sample-size rules, both commonly used, have disadvantages compared to increasing

sample sizes. The first—to use a single iteration, called a static algorithm in Shapiro (1996)—is

typical, but often inefficient. Here only m1 needs to be specified, and a solution x(ω1) of Equa-

tion (3) with i = 1 is returned. The sample size m1 is necessarily large for Equation (3) with i = 1

to well approximate g, which causes the root-finding method to be inefficient because the lack of

information from previous iterations causes the method to examine many points x, each requiring

the computation of ȳm1
(x; ω1) based on a large sample size of m1. We discuss this first sample-size

rule in Section 3.1. A second sample-size rule, also not allowed within RA, is to use k iterations,

each of the same sample size: m1 = m2 = · · · = mk. The multiple iterations allow subsequent

iterations to begin with a good guess of the retrospective root x∗(ωi), saving computational effort.

The disadvantage is lack of convergence as k goes to infinity because of fixed finite sample size m1.

Any bias in the retrospective root for the true root (or also in the retrospective solution for the

retrospective root) does not go to zero. As with using k independent replications in any simulation

experiment, reasonable practical performance can sometimes be obtained with such an approach

(Healy 1992, p. 9). Although bias cannot be estimated, estimating the standard error of the root

estimator is straightforward. The tradeoffs between these two sample-size rules are analogous to

those between steady-state simulation using one-long run versus k shorter runs: less bias versus

easy standard-error estimation. RA is designed to obtain both advantages.

By definition of RA, the new observations in Step 1 (mi in IRA and mi −mi−1 in DRA) that

are used to obtain ȳmi
(x; ωi) must be independent of previously generated observations so that the

variance estimators can work. The new observations do not, however, need to be independent of

each other. Any variance reduction via dependence-induction methods must be applied within the

set of new observations, thereby hiding the dependence within ȳmi
(x). For example, antithetic pairs

can be applied directly for either IRA or DRA. Stratified sampling, however, is straightforward for

IRA but not for DRA. Application to steady-state simulation is straightforward if ω is chosen to be

the random numbers, which are easily made independent; the dependence between the retrospective

roots will become negligible as the sample size grows.

8

2.4 RA Variance Estimation

The third algorithm criterion is the ability to estimate the standard error of the algorithm’s current

root estimator x̄(ω1, ..., ωi). We derive variance estimators for both IRA and DRA here. As

discussed in Section 4.1, these estimators are helpful for determining error tolerances, for use within

the numerical root-finding algorithm, for stopping the overall algorithm, and for reporting precision

of the final root estimator. These variance estimators are based on assumptions that are consistent

with our intuition and computational results in Section 5, but certainly do not hold exactly in

practice. For example, the computational results show that bias in the variance estimator is large

in early iterations before becoming negligible.

First consider IRA. For now assume that IRA retrospective solutions are unbiased uncorre-

lated estimators of the root x∗, with variances inversely proportional to sample size; that is,

mjVar(x(ω1, ..., ωj)) = ν2 for each j. RA algorithms contain no systematic reason for estimates

to be high or low, so biases should be small. That the variance is inversely proportional to sam-

ple size is natural, at least asymptotically (see also Lemma 2 in Section 3.1). The independent

retrospective roots {x∗(ωj)} of IRA yield retrospective solutions {x(ω1, ..., ωj)} that are nearly

uncorrelated; some correlation might arise from the use of information from previous retrospective

iterations, such as an initial search point. This correlation should be minor because RA forces

the jth retrospective solution to be close to (within εj of) the jth retrospective root. Consider the

covariance between two successive retrospective solutions. Let b(ω1, ..., ωj) denote the error of the

jth retrospective solution, i.e.,

x(ω1, ..., ωj) = x∗(ωj) + b(ω1, ..., ωj).

Then Cov[x(ω1, ..., ωj), x(ω1, ..., ωj+1)] = Cov[x∗(ωj) + b(ω1, ..., ωj), x∗(ωj+1) + b(ω1, ..., ωj+1)] =

Cov[x∗(ωj), b(ω1, ..., ωj+1)] + Cov[b(ω1, ..., ωj), b(ω1, ..., ωj+1)] because ω1, ω2,... are generated

independently in IRA. The first covariance is small because (i) x∗(ωj) and b(ω1, ..., ωj+1) are cor-

related only through ωj not the other ω’s, and (ii) the value of b(ω1, ..., ωj+1) depends more on

x(ω1, ..., ωj), for example as an initial point, but little on x∗(ωj). The second covariance is small

because (i) the signs of the two errors b(ω1, ..., ωj) and b(ω1, ..., ωj+1) are nearly independent, and

(ii) the magnitude of the two errors depends mainly on their error tolerances εj and εj+1; and hence

9

if the error tolerances {εl : l = 1, 2, ...} are substantially smaller than the standard deviation of

the current retrospective root, then the correlation between successive errors should be small. For

these reasons assuming zero correlation seems reasonable.

These IRA assumptions yield two useful results. First, after i IRA retrospective iterations, the

minimal-variance unbiased root estimator is x̄(ω1, ..., ωi), the weighted average of the i retrospec-

tive solutions, as given in Equation (5). Second, these assumptions provide an estimator of the

variance of the root estimator. The variance is Var(x̄(ω1, ..., ωi)) = ν2/
∑i

j=1 mj . Therefore, after

i retrospective iterations, an unbiased sum-of-squared-differences estimator of the variance of the

IRA root estimator is, for i > 1,

V̂ar(x̄(ω1, ..., ωi)) = ν̂2/
i∑

j=1

mj

=
i∑

j=1

mj [x(ω1, ..., ωj)− x̄(ω1, ..., ωi)]
2/[(i− 1)

i∑

j=1

mj],

= [
i∑

j=1

mjx
2(ω1, ..., ωj)− (

i∑

j=1

mj)x̄
2(ω1, ..., ωi)]/[(i− 1)

i∑

j=1

mj]. (6)

Now consider DRA. We make assumptions and arguments analogous to those of IRA. Assume

that the DRA retrospective solutions are unbiased estimators of the root with variance inversely

proportional to the sample size and that covariances are inversely proportional to the larger sample

size; that is, Cov[x(ω1, ..., ωj), x(ω1, ..., ωk)] = ν2/max{mj, mk} for each j and k. The arguments

for unbiasedness and variances are identical to those for IRA. The argument for covariance is

based on the assumption that when j < k, the kth retrospective solution x(ω1, ..., ωk) = mjm
−1
k

x(ω1, ..., ωj)+(mk−mj)m
−1
k x(ω̃), the weighted average of the jth retrospective solution x(ω1, ..., ωj)

and the retrospective solution x(ω̃) of the sample-path equation ȳm̃(x; ω̃) = γ, where m̃ = mk−mj

and ω̃ = ωk\ωj = {ωmj+1, ..., ωmk
}, the set of (mk−mj) new observations independent of ωj. This

covariance assumption is true if the retrospective solution equals the retrospective root at every

iteration, g is linear, and y(x; ω) = g(x) + z(ω), where the random noise z(ω) is functionally inde-

pendent of x for every ω. If this assumption is not true, then observations are becoming either more

or less valuable. Under the assumption, Cov[x(ω1, ..., ωj), x(ω1, ..., ωk)] = Cov[x(ω1, ..., ωj), mjm
−1
k

x(ω1, ..., ωj) + (mk −mj)m
−1

k x(ω̃)] = mjm
−1

k Var[x(ω1, ..., ωj)] = ν2/mk. Hence the form of the

10

covariance is obtained.

These DRA assumptions suggest an estimator of its variance. The variance of the DRA root

estimator can be estimated using

V̂ar(x̄(ω1, ..., ωi)) = ν̂2/mi

=

∑i−1
j=1 αij[x(ω1, ..., ωj)− x(ω1, ..., ωi)]

2

i− 1
, i > 1, (7)

where the coefficients αij = mj/(mi −mj) are chosen to make each term of the sum an unbiased

estimator of the variance. Because αij functionally depends on mi, the estimator cannot be com-

puted using cumulative sums as in Equation (6), so the values of the i retrospective solutions must

be stored. For any fixed i, however, mi is fixed; then expanding the squared differences allows

computation using only the two cumulative sums for αijx(ω1, ..., ωj), and αijx
2(ω1, ..., ωj) over j.

2.5 Retrospective Approaches for Stochastic Optimization

The genesis of RA algorithms lies in retrospective optimization. The optimization problem is

to find the optimal point of an objective function using only an estimator of the function at

any feasible point x (Fu 1994). A retrospective approach optimizes sample-path problems that

approximate the optimization problem of interest. Rubinstein and Shapiro (1993) use the phrase

stochastic counterpart and Gürkan et al. (1994), for example, use sample path for this approach.

We adopt Healy and Schruben’s (1991) phrase retrospective to capture the idea of solving a random

problem that happened in the past. Robinson (1996) contains a good summary of such optimization

algorithms.

The design of the family of RA algorithms has five fundamental features. We discuss these

features and how they distinguish RA from retrospective optimization algorithms as follows:

• We use a sequence of sample-path approximations with increasing sample sizes and decreasing

error tolerances. This structure is central to our simultaneous goals of proving convergence

and achieving good practical performance (as discussed in Section 2.3). Shapiro (1996)

describes this approach as dynamic to distinguish it from the more-typical static algorithms,

which solve a single sample-path problem. Shapiro and Homem-de-Mello (1997) and Homem-

de-Mello et al. (1999) recently have used a structure similar to ours (also discussed earlier in

11

Chen and Schmeiser 1994b and Chen 1994), but with random sample sizes and a stopping rule

based on a statistical test of hypothesis. Shapiro and Wardi (1996) consider gradient descent

algorithms, which are both dynamic and Markovian. The bundle-type method (Plambeck et

al. 1996) is dynamic, but the error tolerance does not decrease.

• Averaging solutions from a sequence of independent problems, which we argue is more effi-

cient. That is, IRA is more efficient than DRA because DRA reprocesses old data whereas

IRA is always working on new data (as discussed further in Section 5.1). Healy and Schruben

(1991) average solutions of independent sample-path approximations, but each has the same

sample size.

• A black-box approach, in which the problem structure is not used. Our work is in the spirit

of methods such as bisection search or regula falsi rather than much of the recent literature

that exploits problem structure. Stochastic approximation (for example, Andradóttir 1992,

L’Ecuyer et al. 1994, and L’Ecuyer and Glynn 1994) and bundle-type methods (Plambeck et

al. 1996) fall into this category. Healy (1992) and Healy and Xu (1994, 1995), on the other

hand, develop problem-specific algorithms.

• Robustness. We strive for good practical performance without algorithmic tuning. RA logic

is non-Markovian, in that information from previous sample-path approximations is used in

the solution of the current approximation. The bundle-type algorithm used by Plambeck

et al. (1996) is also non-Markovian. In contrast, the stochastic approximation algorithm is

typically Markovian.

• Convergence proof. We prove convergence under fairly broad conditions. Shapiro (1996)

proves convergence for various static algorithms. Shapiro and Wardi (1996) prove convergence

of dynamic Markovian algorithms. Robinson (1996) proves convergence of the single-iteration

bundle-type algorithm.

Substantial earlier work considered static algorithms. Rubinstein and Shapiro (1993) solve

stochastic optimization problems by solving SRFPs, finding the zero of the associated gradient

functions. They estimate the optimal point by finding the zero of a sample-path gradient function

using the score-function gradient estimates from a single long-run simulation experiment. They

12

assume that a finite-time algorithm is available for solving the sample-path equation exactly; that

is, in our notation they assume that x(ω1) = x∗(ω1). Healy and Schruben (1991) solve stochastic

optimization problems by analyzing each problem’s structure to find the exact optimal point of

a sample-path (or retrospective) objective function. A specific algorithm therefore differs from

problem to problem (see Healy and Schruben 1991 and Fu and Healy 1992). Huber (1964) proposed

M-estimators, which are obtained by optimizing an error function based on sample data; examples

include maximum-likelihood and least-square estimators. In many applications, such optimization

is obtained by solving for the zero of the gradient function. Following Serfling (1980, p. 243) we view

M-estimators as the solution of a sample-path equation, such as Equation (1). The retrospective

roots x∗(ω) satisfying Equation (1) and x∗(ωi) satisfying Equation (3) are therefore M-estimators.

3 CONVERGENCE OF RA ALGORITHMS

We show here that under weak conditions RA algorithms converge w.p.1 to the true root x∗ that

satisfies g(x∗) = γ. As discussed in Section 2.2, RA algorithms estimate x∗ by solving, to within an

error bound, a sequence of sample-path equations based on increasing sample sizes. To show the

convergence of RA algorithms, we consider two cases: (i) a single RA iteration using a long-sample-

path equation, and (ii) a complete RA algorithm using a sequence of equations of the form (3) for

i = 1, 2, The first case, discussed in Section 3.1, could be used to solve problems with a single

iteration with a fixed value of m1 and ε1 (as with the static methods of Section 2.5), but our intent

here is to use the single-iteration results of Case (i) to prove in Section 3.2 that RA algorithms

converge to x∗ w.p.1 as the iteration index i goes to infinity. The advantages of using multiple

retrospective iterations rather than a single iteration is discussed in Section 2.3. In Section 4 we

discuss the choice of RA algorithm components.

3.1 Case (i): A Single RA Iteration

Consider using an RA algorithm but stopping after the first retrospective iteration using only the

first sample-path equation, Equation (3) with i = 1, and returning x(ω1) as the estimator of the

root x∗. (IRA and DRA are identical in this case.) We consider here the asymptotic behavior of

x(ω1) in the limit as the first-iteration sample size m1 goes to infinity and ε1 goes to zero. Although

13

in practice m1 and ε1 are fixed, the asymptotic analysis here is interesting in the same sense that it

is interesting to show that the sample mean converges to the population mean as sample size goes

to infinity even though in practice sample size does not grow.

To simplify notation and provide emphasis on the sample size, we denote the sample size m1 by

m, the error ε1 (dependent on the sample size) by ε(m), the sample path ω1 by ω, the retrospective

root x∗(ω1) by X∗(m), and the retrospective solution x(ω1) by X(m). Equation (3) with i = 1 is

then

ȳm(X∗(m); ω) = γ, (8)

where ȳm(x; ω) is a consistent estimate of g(x) for all real x (i.e., for any x, w.p.1 ȳm(x; ω) converges

to g(x) as m → ∞.) The retrospective root X∗(m) satisfying Equation (8) is an M-estimator

(Section 2.5). Our purpose here is to show that X(m), the approximation to X∗(m), converges to

the true root x∗ as the sample size m goes to infinity.

We show convergence in two parts: (1) X∗(m) converges to x∗ w.p.1, and then (2) X(m)

converges to x∗ w.p.1. Since X∗(m) is an M-estimator, the first part follows from the results

of M-estimators as stated in Lemma 1, based on the assumption that ȳm(x; ω) is an unbiased

estimate that averages m monotonic functions. We further develop Lemmas 3 and 4 to extend the

result to more-general functions g and sample-path approximations ȳm(·; ω). The second part, the

consistency of X(m), is shown in Lemma 5.

Since Equation (8) may have no root or multiple roots, we define the concepts of a crossing

root and a crossing set, which are then used in Lemmas 3, 4, and 5 and Theorems 1 and 2 in

Section 3.2. Every root is a crossing root; a crossing root might additionally be a discontinuity

point where ȳm(·; ω) crosses γ. To be more specific, we define the crossing root and crossing set as

follows. Let sets

RN = {x : ȳm(x; ω)− γ < 0, x ∈ <},

RZ = {x : ȳm(x; ω)− γ = 0, x ∈ <}, and (9)

RP = {x : ȳm(x; ω)− γ > 0, x ∈ <}.

Assume that the function ȳm(·; ω) is defined over the whole real-number line <. Then the three

14

mutually exclusive sets RN , RZ , and RP partition <, i.e, < = RN ∪ RZ ∪RP . Further define

RNP = {x : x ∈ RN and x on the boundary of RP or RZ} ∪

{x : x ∈ RP and x on the boundary of RN or RZ}.

Then RZ contains all (true) roots of Equation (8) and RNP contains all discontinuity points where

ȳm(·; ω) crosses γ but does not intersect the level γ. The crossing set Cm(ω) of Equation (8) is

therefore defined as

Cm(ω) = RZ ∪ RNP . (10)

Every element of Cm(ω) is a “crossing root”. The set Cm(ω) is empty if the function ȳm(·; ω) lies

entirely below or entirely above γ.

Lemmas 1 and 2 below use the concept of isolated root, which is a discrete point in Cm(ω). Of

(true) roots, crossing roots, and isolated roots, the most general are crossing roots; all (true) roots

and all isolated roots are also crossing roots. A crossing root, however, might be a (true) root, an

isolated root, both, or neither.

x
1

x
2

x
3

)
;
(
 ω
x
y

m

x
4

 x
5

)
;
(
 ω
x
y

m

γ

(a)
 (b)

x
6

)
;
(
 ω
x
y

m

(c)

)
;
(
 ω
x
y

m

(d)

γ

 γ

 γ

x
 x
x
 x

Figure 1: Four functions illustrating different types of roots.

We illustrate crossing roots, isolated roots, and (true) roots for four different functions ȳm(·; ω)

in Figure 1. The function ȳm(·; ω) in Subfigure 1(a) crosses the value γ at three distinct points x1,

x2, and x3; hence, any of these points is a crossing root and Cm(ω) = {x1, x2, x3}. All three of

these points are also isolated roots. The only root is x2; the points x1 and x3 are not roots because

ȳm(x1; ω) 6= γ and ȳm(x3; ω) 6= γ. The function ȳm(·; ω) in Subfigure 1(b) crosses the value γ only

once with an intersecting interval (x4, x5] on the x-axis. Hence, all points in the interval (x4, x5]

15

are roots, all points in [x4, x5] are crossing roots but none is an isolated root, and Cm(ω) = [x4, x5].

The function ȳm(·; ω) in Subfigure 1(c) lies below the level γ except at one point x6, where ȳm(·; ω)

crosses the value γ and then immediately drops down to below γ. Therefore, Cm(ω) = {x6}; x6 is

also an isolated (crossing) root but not a (true) root. The function ȳm(·; ω) in Subfigure 1(d) has

no intersection with the level γ. Hence, there is no root and no crossing root; Cm(ω) is the empty

set.

Equation (8) may have zero, one, or multiple crossing roots. Zero crossing roots occur when

the sample size m is small, allowing ȳm(x; ω) to lie entirely below or above γ for all real x. Multiple

crossing roots occur, for example, when ȳm is a step function and one of the steps has height γ.

Step functions occur in the two examples of Sections 1, 2 and 5, where y(x) is an indicator function.

Indicator functions occur, for example, when y(x) indicates whether an event occurs or not.

We redefine the retrospective root X∗(m) of Equation (8) to be

X∗(m) =





any crossing root if Cm(ω) is not empty

0 otherwise
. (11)

The retrospective root X∗(m) can be selected arbitrarily from Cm(ω) using any rule that produces

a solution sequence {X∗(m)}. This selection rule is usually implicit in the solution method. The

choice of X∗(m) = 0 when Cm(ω) is empty is arbitrary because asymptotically Cm(ω) is empty

with probability 0. A better practical value might be the current estimate of x∗.

Asymptotically the retrospective root X∗(m) is an M-estimator. Lemmas 1 and 2 show the

consistency and asymptotic normality of M-estimators, and hence can be used for retrospective

roots. Proofs can be found in Huber (1964) and Serfling (1980, p. 251), respectively.

Lemma 1 Let x∗ be an isolated root of g(x) = γ. Suppose that ȳm(x; ω) =
∑m

i=1 y(x; ωi)/m and

each y(x; ωi) yields an unbiased estimator of g(x) for every x. Further, suppose that, for every ω,

the function y(x; ω) is monotone in x. Then x∗ is unique, and any solution sequence {X∗(m)}
satisfying Equation (8) converges to x∗ w.p.1 as m → ∞. Further, if with probability 1 there is a

neighborhood of x∗ in which y(x; ω) is a continuous function of x, then there exists such a solution

sequence.

Lemma 2 (Serfling 1980, p. 251) states conditions under which
√

m(X∗(m)− x∗) is asymptotically

normally distributed.

16

Lemma 2 Let x∗ be an isolated root of g(x) = γ. Suppose the unbiasedness and monotonicity of

y(x ; ω) as in Lemma 1 . Further, suppose that g(x) is differentiable at x∗ with g′(x∗) 6= 0 and that

E[y2(x; ω)] is finite for x in a neighborhood of x∗ and is continuous at x∗. Then, as m → ∞ any

scaled solution sequence {√m(X∗(m)−x∗)} of Equation (8) has an asymptotic normal distribution

with mean zero and variance Var[y(x∗; ω)] / [g′(x∗)]2.

Lemmas 3 and 4 show that a solution sequence {X∗(m)} converges to x∗ w.p.1 under certain

conditions on the function g and the sample-path approximation ȳm. Both lemmas relax the

assumption of unbiasedness and monotonicity of ȳm(x; ω), with Lemma 3 requiring only uniform

convergence of ȳm(x; ω) to g(x) w.p.1 as m → ∞ and with Lemma 4 yet more relaxed with only

point-wise convergence of ȳm(x; ω) to g(x) w.p.1 as m → ∞ but requiring ȳm(·; ω) to cross γ no

more than once. (That consistency is a relaxation of unbiasedness follows from the strong law of

large numbers, Billingsley 1979, p. 70. Dropping the unbiasedness assumption allows, for example,

the initial transient of steady-state simulation.) In addition, both lemmas allow the sample-path

approximation ȳm(·; ω) to have multiple crossing roots for finite values of m. Lemma 3 considers a

monotonic function g. We list the proof in Appendix.

Lemma 3 Assume that

1. the function g : < → < is a nondecreasing function with unique root x∗ satisfying g(x∗) = γ,

and

2. the sample-path approximation ȳm(x; ω) converges to g(x) uniformly in x w.p.1 as m→∞.

Then, for any selection rule defining the solution sequence {X∗(m)} from {Cm(ω)},

lim
m→∞

X∗(m) = x∗ w.p.1.

Lemma 4 considers a function g that has a unique root but that is not necessarily monotonic.

It assumes that ȳm(·; ω) is pointwise convergent to g and that its crossing set, if not empty, is a

unique interval. That is, for every value of m the crossing set Cm(ω) of Equation (8), if not empty,

is an interval w.p.1, i.e.,

Pr{ ω : Cm(ω) = [xL(ω), xU(ω)] } = 1,

17

where xL(ω) = sup{ x : ȳm(x; ω) < γ } and xU(ω) = inf{ x : ȳm(x; ω) > γ }. If xL(ω) > xU(ω),

then Cm(ω) is empty. For example, xL(ω) = x4 and xU (ω) = x5 in Figure 1(b). This condition

restricts the function ȳm(·; ω) to cross the target value γ at most once, but allows multiple contiguous

roots. In addition to Figure 1(b), examples include the step functions that arise in the two examples

of Sections 1, 2 and 5 and any function ȳm(x; ω) monotonic in x. Like Lemma 3, Lemma 4 does

not require an unbiased ȳm(x; ω). The proof is listed in Appendix.

Lemma 4 Assume that

1. the function g : < → < has a unique root x∗ and satisfies

g(x)





> γ if x > x∗

= γ if x = x∗

< γ if x < x∗

,

2. for every x ∈ <, the estimate ȳm(x; ω) converges to g(x) w.p.1 as m→∞, and

3. for every positive integer m, w.p.1 the crossing set Cm(ω) of the function ȳm(x; ω) is either

empty or an interval.

Then, for any selection rule defining the solution sequence {X∗(m)} from {Cm(ω)},

lim
m→∞

X∗(m) = x∗ w.p.1.

Lemmas 3 and 4 are stated for functions g that are increasing in the neighborhood of the root

x∗. Trivial changes, e.g. redefining g as −g, allow them to be stated for functions g that are

decreasing near x∗.

Lemma 5 states that, despite allowing an error ε(m) in finding the root of the sample-path

equation, a single iteration of an RA algorithm will converge as m goes to infinity.

Lemma 5 Assume that conditions in Lemma 1, 3, or 4 hold. If X(m) is obtained by one RA

iteration and if ε(m) converges to 0 w.p.1 as m goes to infinity, then

lim
m→∞

X(m) = x∗ w.p.1.

18

Proof: By Lemma 1, 3, or 4, X∗(m) converges to x∗ w.p.1. Therefore, w.p.1 there exists an N (ω)

such that for every m > N (ω) the sample-path equation has a crossing root. When there

is a crossing root, the root-finding method returns a solution X(m) that satisfies |X(m)−
X∗(m)| < ε(m). Because ε(m) converges to zero w.p.1 as m goes to infinity, the random

absolute numerical error |X(m) − X∗(m)| converges to 0 w.p.1. Then Lemma 1, 3 or 4

implies that X(m) converges to x∗ w.p.1.

3.2 Case (ii): Solving a Sequence of Sample-Path Equations

We now show that RA algorithms, defined in Section 2.2, converge w.p.1. Recall that RA algo-

rithms solve a sequence of equations of the form (3), for i = 1, 2,..., for the retrospective roots

{x∗(ωi)}, using an increasing sample-size sequence {mi}. At each iteration i, RA returns a solution

x(ω1, ..., ωi), an approximation of x∗(ωi), within error tolerance εi. The dependently seeded RA,

DRA, repeats mi−1 observations ωi−1 in ωi while in IRA all retrospective roots are independent.

After i iterations, the DRA root estimator of the root x∗ is x̄(ω1, ..., ωi) = x(ω1, ..., ωi), the last

retrospective solution; the IRA root estimator is x̄(ω1, ..., ωi) =
∑i

j=1 mjx(ω1, ..., ωj) /
∑i

j=1 mj , a

weighted average of solutions x(ω1), ..., x(ω1, ..., ωi) where each weight is proportional to the sample

size.

Theorems 1 and 2 respectively show that DRA and IRA algorithms converge to the solution of

an SRFP if its function g and associated estimator ȳm are well behaved.

Theorem 1 Let a specific DRA algorithm be used to find the unique root x∗ of the equation g(x) =

γ using the estimator ȳm(x; ω) for g(x). If g and ȳm(·; ω) satisfy the conditions in Lemma 1, 3, or

4, then the DRA root estimator x̄(ω1, ..., ωi) converges to x∗ w.p.1 as i→∞.

Proof: The proof proceeds sequentially in three parts: (1) limi→∞ x∗(ωi) = x∗ w.p.1; (2) limi→∞ x(ω1, ..., ωi)

= x∗ w.p.1; (3) limi→∞ x̄(ω1, ..., ωi) = x∗ w.p.1.

The sample-size sequence {mi} is increasing, so “i → ∞” implies “mi → ∞”; therefore,

Lemma 1, 3, or 4 yields the first part. The second part follows because, by definition of RA

algorithms, the sequence of error tolerance {εi} converging to zero w.p.1 implies convergence

using Lemma 5. The third part is trivial because x̄(ω1, ..., ωi) = x(ω1, ..., ωi) by definition of

DRA.

19

Theorem 2 for IRA is analogous to Theorem 1 for DRA. The new condition—that
∑

∞

j=1 E|x∗(ωj)

−x∗| is finite—seems likely to be satisfied in practice. For example, assume that there is a finite

constant α such that E|x∗(ωj) − x∗| < α/mj for every j, as would be consistent with Lemma 2.

Then
∑

∞

j=1 E|x∗(ωj)− x∗| = α
∑

∞

j=1 m−1
j , which is finite if, for example and as we recommend for

other reasons, mj = c1mj−1 for some c1 > 1. As further evidence that the condition is weak, notice

that the above argument holds even if the assumption is changed to use the squared difference

rather than the absolute difference.

IRA convergence differs from DRA convergence in that each retrospective iteration is indepen-

dent. Define ω̄ = (ω1, ω2, ...), the infinite sequence of observed random numbers corresponding to

the one realization from the sample space. Convergence w.p.1 in Theorem 2 is with respect to ω̄.

Theorem 2 Let a specific IRA algorithm be used to find the unique root x∗ of the equation g(x) = γ

using the estimator ȳm(x; ω) for g(x). Assume that
∑

∞

j=1 E|x∗(ωj) − x∗| is finite. Then the IRA

root estimator x̄(ω1, ..., ωi) converges to x∗ w.p.1 as i→∞.

Proof: As with Theorem 1, the proof proceeds sequentially in three parts: (1) limi→∞ x∗(ωi) = x∗

w.p.1, (2) limi→∞ x(ω1, ..., ωi) = x∗ w.p.1, and (3) limi→∞ x̄(ω1, ..., ωi) = x∗ w.p.1.

The first part shows that the retrospective roots converge to the root x∗ of g. The finiteness

of
∑

∞

j=1 E|x∗(ωj)− x∗| is sufficient, using Result 1.3.5 of Serfling (1980).

The second part shows that retrospective solutions converge to x∗. By definition of RA

algorithms, εi(ω̄) converges to zero w.p.1 and |x(ω1, ..., ωi) − x∗(ωi)| < εi(ω̄) for every i.

Hence w.p.1 we have the following property: for every ε > 0 there exists an I(ε, ω̄) such

that|x(ω1, ..., ωi)− x∗(ωi)| < εi(ω̄) < ε for every i > I(ε, ω̄). Then the first part implies the

second part.

The third part shows convergence of IRA algorithms. Let bi =
∑i

j=1 mj; then limi→∞ bi =

∞. By definition

x̄(ω1, ..., ωi) =
i∑

j=1

mjx(ω1, ..., ωj) /
i∑

j=1

mj = b−1
i

i∑

j=1

mjx(ω1, ..., ωj).

By the Toeplitz Lemma (Loéve, 1977, p. 250), the event limi→∞ x(ω1, ..., ωi) = x∗ implies

20

the event

lim
i→∞

x̄(ω1, ..., ωi) = x∗.

Therefore, convergence of x(ω1, ..., ωi) to x∗ w.p.1 implies convergence of x̄(ω1, ..., ωi) to x∗

w.p.1.

4 IMPLEMENTATION OF RA ALGORITHMS

We discuss here two issues associated with implementing RA algorithms: choice of a specific RA

algorithm and choice of independent random variables ω. Although all RA algorithms converge

under weak conditions, as shown in the previous section, computational effort to obtain roots to

a specified precision depends upon the specific algorithm used. Similarly, computational effort

depends upon the user’s definition of the random variables ω; our definition of ω based on random

numbers is a safe, but not necessarily efficient, default. We discuss these choices in the next two

subsections, respectively. Despite sometimes giving quite specific implementation suggestions, our

intention here is only to provide a sense of the issues.

4.1 Choice of a Specific RA Algorithm

Specifying an RA algorithm requires choosing three components: a rule for increasing the sample

sizes {mi}, a rule for decreasing the error bounds {εi}, and a method for solving the sample-path

equations. We discuss each, as well as stopping rules for the algorithm as a whole.

The rule to determine the sample-size sequence {mi} can take many forms. A reasonable family

of sequences to consider is mi being the integer part of a + c1(mi−1)
b for a ≥ 0, b ≥ 1, and c1 ≥ 1.

If, as we argued earlier, Var(x∗(ωi)) / Var(x∗(ωi−1)) = mi−1/mi, setting a = 0 and b = 1 is

required to make the variance ratio independent of iteration number i. Therefore, mi = c1mi−1,

with c1 > 1, seems natural. Chen (1994) showed experimentally that computational performance is

robust to choices of c1 over the set {1.5, 2, 5, 10}. Smaller values of c1 provide more times at which

to stop the algorithm. To cleanly obtain only integer values of mi, we typically use c1 = 2. The

remaining issue is the choice of the initial sample size m1. Any small value, including m1 = 1, is

fine; some numerical root-finding methods might be able to use standard-error information about

21

ȳm1
(x; ω1), in which case a larger value of m1 might be useful. But, m1 should be small because on

the first iteration nothing is known about the location of the retrospective root x∗(ω1), causing the

root-finding method to examine many points x, with each examination requiring m1 observations

for ȳm1
(x). The goal is that mi is small when many points are examined in the early iterations,

and that mi grows large in later iterations when very few points need to be examined because the

previous iterations provide a good initial guess x̄(ω1, ..., ωi−1) of x∗(ωi).

The rule to determine the decreasing error-tolerance sequence {εi} also can take many forms.

If the sample sizes {mi} increase by a factor of c1, then our earlier assumptions about variance

decreasing with sample size suggest the form εi = c
−1/2

1 εi−1. The problem is then to specify an

appropriate ε1. Chosen too small, the root-finding method wastes computation finding a solution

x(ω1, ..., ωi) close to x∗(ωi), which might not be close to x∗ because of small sample size. Because

we are assuming that no prior information is available about sampling error, a value of ε1 scaled to

the problem at hand is not known. In our implementation discussed below and used in Section 5.1,

we have used a very large value of ε1 (such as 1050), which eliminates the need to select a problem-

dependent value; the error-tolerance logic is then reduced to being a device to prove convergence.

We allow random sequences of error tolerances to facilitate future development of RA algorithms

whose εi at each retrospective iteration is based on an estimate of the standard error of x∗(ωi). Such

algorithms would use a random sequence {εi}, each a factor ϑ, say, of the standard-error estimate

of x∗(ωi). This standard error could be estimated based on Equation (7) for DRA and Equation (6)

for IRA, or the asymptotic formula in Lemma 2. Choosing ϑ ∈ [.1, 1.] seems reasonable; less than

one-tenth of a standard error is certainly too much precision and more than one standard error

introduces a substantial new source of error.

The deterministic root-finding method for solving Equations (3) for i = 1, 2, ... can be either

analytical or numerical. Analytical approaches require a known and simpler structure of Equa-

tion (3); Healy (1992) investigates optimization problems for which an analytical solution can be

obtained. Our statement of the SRFP includes no structural information; in this black-box context

numerical methods must be used. The advantage is that no analyst effort is required to estimate

a root; the disadvantage is that the computational effort is greater than if Equation (3) could

be solved analytically. Various numerical search methods are easily implemented, are reasonably

efficient, and provide error bounds. Well-known examples include bisection and modified regula

22

falsi (also called the modified false-position method), as discussed, for example, in Conte and de

Boor (1980). Such methods iterate from a starting point, which for RA algorithms would be

x̄(ω1, ..., ωi−1). They also require initially bounding the solution x∗(ωi), which can be done by

searching points in increments or decrements of δi. If x∗(ωi) were known, the optimal δi would be

|x̄(ω1, ..., ωi−1) − x∗(ωi)|. Because |x̄(ω1, ..., ωi−1) − x∗(ωi)| and [Var(x̄(ω1, ..., ωi−1) − x∗(ωi))]
1/2

are proportional, we could choose δi = c2[Var(x̄(ω1, ..., ωi−1)− x∗(ωi))]
1/2, where c2 > 0, for i > 1.

Chen (1994) shows that RA is robust with respect to the choices of c2 and δ1; the empirical results

favor a small δ1. Larger values of c2 accelerate the bound search but result in a bigger bounding

interval. Setting c2 = 1 seems reasonable. Using the assumptions for variances and the additional

assumption x∗(ωi) = x(ω1, ..., ωi), then Var(x̄(ω1, ..., ωi−1)− x∗(ωi)) equals to ν2(m−1
i−1 −m−1

i) for

DRA and ν2([
∑i−1

j=1 mj]
−1 + m−1

i) for IRA and hence can be estimated based on Equation (7) or

(6). The chosen root-finding method must be implemented to handle multiple roots of ȳmi
(.; ωi)

and to detect the difficult situation of no root in the range of the computer arithmetic.

The RA algorithms defined in Section 2.2 do not have stopping rules, which are irrelevant to our

proofs of convergence (unlike the εi stopping rules for the numerical search during each retrospective

iteration i.) Nevertheless, all but interactive implementations must automate stopping. Most

natural stopping rules center on a standard-error estimate for the current root estimator, such as

Equation (6) for IRA and Equation (7) for DRA. When solving problems iteratively with c1 = 2,

each iteration takes about twice as long as the previous iteration, so by retrospective iteration eight

(or so) the results appear on the screen slowly enough to read in real time. Deciding when to stop is

then easy. To obtain an automated stopping rule, after each retrospective iteration a standard-error

estimate can be computed and the algorithm stopped when the estimate is less than a user-specified

precision. Because the standard-error estimate can be misleading when the number of retrospective

iterations is small, we might require at least four (or so) iterations to avoid premature stopping.

4.2 Choice of ω

In Section 2 we define ω as pseudorandom numbers. This is a natural and safe choice in simulation.

Depending on the model, however, ω can be chosen differently for greater computational efficiency,

while not affecting the solution returned by the RA algorithm. Alternative choices of ω must be

functionally independent of x and ideally include more of the computations needed for generating

23

the observations used in ȳm. Whatever the choice, the sample {ω1, ..., ωm} needs to be generated

only once for ȳm(x; ω) to be computed at any number of points x during the process of solving the

sample-path equation.

Consider again the example from Section 1, the analogy of Student’s t distribution. There are

five possible choices for each component ω in ω = (ω1, ..., ωm). In order of increasing efficiency, they

are (1) the random number seed, (2) the random numbers used to generate values for V1, ..., Vn, (3)

the random variates V1, ..., Vn, (4) the pair of statistics (V̄ , S), and (5) the statistic T . Because ω

needs to be computed only once for solving the sample-path equation, the higher-level definitions

of ω lead to less total computing time. Of course, the values of ω need to be stored from the

computation at the first x value for use at later x values.

The choice of ω affects the computing time of IRA and DRA. A high-level choice reduces

computing time for both, but the ratio of computing times for IRA and DRA increases as the

choice of ω becomes more efficient. Whatever the choice, if the sample-size rule is mi = c1mi−1,

the ratio lies in the interval [1, u), where u = mi/(mi−mi−1) = c1/(c1−1) is the rate at which the

retrospective samples grow (as discussed in Section 4.1). The argument is straightforward. Of the

four RA algorithm steps (Section 2.2), only the first two involve significant computing time. First

consider Step 2, which solves the deterministic root-finding problem. Because at each retrospective

iteration i the sample size mi is the same for both DRA and IRA, the time for Step 2 is essentially

identical, although usually non-trivial. Now consider Step 1, which generates the ω values. At

retrospective iteration i, IRA must generate mi new values but DRA has the opportunity to save

and reuse mi−1 = mi/c1 previous values. Therefore, if storing and saving the previous values is

essentially free, the Step-1 computation time for IRA is about u times that for DRA. Thus, the

ratio is approximately 1 if the Step-2 computation time dominates and approximately u if the

Step-1 time dominates. Therefore, in practice the ratio lies in the interval [1, u), completing the

argument.

A particularly important case is when ω is only the initial random-number seed, in which

case the ratio is one, as illustrated in our empirical results in Table 1. An efficient choice of ω

moves computation from Step 2 to Step 1, and therefore increases the ratio, but not beyond u.

Although inefficient in our example and often elsewhere, choosing the random-number seed for ω

often simplifies the programming necessary to create the procedure ȳm. Storing a more-complex ω

24

in a discrete-event simulation would be difficult and the bookkeeping necessary to store and retrieve

the values might become non-trivial, since the order in which the values are used would change

from one x value to the next. The argument of the previous paragraph would then be invalid.

5 APPLICATION AND EMPIRICAL RESULTS

To illustrate SRFPs and RA algorithms, we now discuss the guaranteed-coverage tolerance interval

(GCTI) problem that motivates our research interest. Numerical results are provided in Section 5.1.

Thiokol Corporation asked us to develop an algorithm to determine, in real time, the constant x∗

satisfying the nonnormal α-coverage γ-confidence tolerance-interval relationship

PrW̄ ,S { PrW {W ≥ W̄ − x∗ S} ≥ α } = γ. (12)

Here the product characteristic W is a continuous random variable with distribution function FW

having known shape but unknown mean and variance. (For example, possibly W is normally dis-

tributed with unknown mean and variance.) The sample mean W̄ and sample standard deviation

S are computed from product characteristics W1, W2, ..., Wn previously generated from FW inde-

pendent of each other and of W . Given sample size n, coverage α, confidence γ, and distribution

shape, the problem is to determine the value of x∗ so that with 100γ% confidence the random tol-

erance interval [W̄ − x∗ S, ∞) contains at least the proportion α of the distribution. The Thiokol

application is to reliability design issues, but such non-normal tolerance-interval problems arise in

many contexts (Chen and Schmeiser 1995 and Chen and Yang 1999).

For this application, the root-finding function is g(x) = PrW̄ ,S { PrW {W ≥ W̄ −x S} ≥ α },
an (n + 1)-dimensional integral. Numerical integration would be inefficient even for small sample

size n. The function g(x) can be estimated easily, however, by ȳm(x), the sample average of m

realizations of the conditional random variable

Y (x) =





1 if PrW {W ≥ W̄ − x S|W̄, S} ≥ α

0 otherwise
.

Notice that the random variable Y (x) is not a function of mean E(W) or variance Var(W) because

25

the random probability PrW{W ≥ W̄ − xS | W̄ , S} does not depend on E(W) or Var(W). Hence

the reliability PrW {W ≥ W̄ − x S | W̄ , S} can be computed using arbitrary values of E(W) and

Var(W) > 0, given W̄ and S based on a sample with these arbitrary values of the mean and variance.

The Monte Carlo computer procedure for generating an observation of Y (x) then consists of four

steps: (1) generate a sample W1, W2, ..., Wn from FW with arbitrarily chosen mean and variance, (2)

compute W̄ and S from the sample, (3) compute p = PrW {W ≥ W̄−x S|W̄ , S} = 1−FW (W̄−x S),

and (4) set Y (x) equal to 0 if p is less than α and to 1 otherwise.

As discussed in Section 4.2, to implement RA the independent variable ω needs to be chosen.

Various choices are possible for this SRFP. As always, the pseudorandom number seed can be used,

and all computations repeated for each value of x: compute the pseudorandom numbers, transform

them to random variates Wj, j = 1, ..., n, compute W̄ and S, compute the reliability p, and compute

y(x). Choices of ω, in order of increasing efficiency, are (1) the pseudorandom number seed, (2)

the pseudorandom numbers, (3) (W1, ..., Wn), and (4) (W̄ , S).

Chen and Schmeiser (1995) analyze the Thiokol SRFP in some detail. They develop an efficient

Monte Carlo algorithm to solve the problem by viewing it as a quantile-estimation problem. As

expected, the special-purpose quantile-estimation algorithm is more efficient than black-box RA

algorithms, which have no information about the problem’s structure. Here, however, we use this

example to compare the efficiency of DRA and IRA algorithms in Section 5.1 and to compare IRA

to a tuned version of classical stochastic approximation in Section 5.2.

5.1 Comparing DRA and IRA

Using a GCTI application, we illustrate the statistical and computational efficiency of specific DRA

and IRA algorithms with a Monte Carlo experiment. For this application, IRA converges faster

than DRA, the estimators of sampling error work reasonably well after the first few iterations, and

saving the random numbers rather than only the seed value reduces computational effort by about

one third for DRA and about one fifth for IRA.

Following the discussion in Section 4.1, we choose the following RA components:

• Sample-size sequence: m1 = 2 and mi+1 = c1mi, where c1 = 2. With these choices, each

new retrospective iteration uses a sample size almost equal to the total used by all previous

26

iterations.

• Error-tolerance sequence: ε1 = 1050 and εi+1 = c
−1/2

1 εi. That is, we essentially remove the

error-tolerance logic.

• A numerical root-finding method that returns a retrospective solution, an approximation of

the root of Equation (3): The initial solution is, rather arbitrarily, x0 = 1. At retrospective

iteration i, ȳmi
is computed at the current root estimate x̄(ω1, ..., ωi−1) for i > 1 and at

x0 for i = 1, which yields either an upper or lower bound. The other bound is found by

searching either left or right at a distance δi. This distance is doubled until the retrospective

root is bounded. The sequence {δi} defined by δ1 = .0001 and δi = c2[V̂ar(x̄(ω1, ..., ωi−1) −
x∗(ωi))]

1/2, except when this value is zero, in which case δi = δi−1. See Section 4.1, where

c2 = 1 is suggested. Once the retrospective root is bounded, regula falsi search is used

to find a retrospective solution within the error tolerance εi. Because of the large error

tolerance values, the logic reduces to two steps: (a) bounding the retrospective solution and

(b) returning the linear interpolate of the bounds as the retrospective solution. We refer to

this variation as the Bounding RA algorithm.

We intentionally did not tune the algorithm parameters x0, m1, δ1, c1, and c2 to this application.

As discussed in Chen (1994), IRA performance is robust to these parameter values, both in that

these values work well over many applications and in that small changes in the values have little

effect on performance.

The application is the GCTI problem with n = 10, α = γ = .99, and Johnson distribution

(Johnson 1949) with skewness 4 and kurtosis 30. The true root is tolerance factor x∗ ≈ 1.938 (see

Chen and Schmeiser 1995, Table 2).

Table 1 compares DRA and IRA performance based on 20 independent runs of 1000 independent

Monte Carlo replications. Each replication solves the GCTI application once with ω̄ = (ω1, ω2, ...)

generated independently of other replications. All digits shown are statistically significant, except

possibly the last digits of cpu times. For iterations i = 1, ..., 10, the quality of the solutions

are measured by the squared bias [E(x̄(ω1, ..., ωi)) − x∗]2, variance Var(x̄(ω1, ..., ωi)), and mean

square error (squared bias plus variance, denoted by MSE), shown in columns two through four,

respectively. The fifth column shows E[V̂ar(x̄i)], the mean of the DRA and IRA variance estimators

27

V̂ar(x̄(ω1, ..., ωi)) from Equations (7) and (6), respectively.

Table 1 shows that IRA produces better solutions than DRA for every retrospective iteration

after the first, where the two algorithms are identical. For both DRA and IRA the squared biases

quickly become negligible compared to the variance. The IRA bias accumulates the biases from past

iterations and hence is bigger than, but decreases at about the same rate as, the DRA bias. Because

the biases are small, the variances and mse’s are nearly identical after the first few retrospective

iterations. For both DRA and IRA these decrease by about 50% with each retrospective iteration,

as is expected because c1 = 2 and therefore the sample sizes are doubling.

The final few iterations suggest that asymptotically IRA has mse and variance that is 50% to

60% that of DRA. This seems reasonable because IRA has the benefit of using twice (or c1/(c1−1)

in general) as many independent observations as DRA (mi for DRA and
∑i

j=1 mj for IRA).

The averages of the variance estimators V̂ar(x̄(ω1, ..., ωi)) from Equations (7) and (6) are shown

in the fifth column. Although these estimators correctly sense the order of magnitude of the

sampling error, they underestimate the variance from the third column. The relative error is less

for DRA than for IRA and both relative errors are decreasing with retrospective iteration number i.

The biases in the variance estimators are caused by the early iterations not having the asymptotic

behavior assumed in the derivations of Equations (7) and (6) due to the arbitrary starting point

x0 = 1. Maybe better variance estimators can be found, perhaps by taking a moving average of

only the previous few iterations. The current estimators work well at their primary purpose, which

is to predict the proper scaling (via δi+1) for the next retrospective iteration.

The two right-most columns show the number of cpu seconds required for 1000 Monte Carlo

replications on a Sun SparcCenter 1000 computer. The times almost double with each retrospective

iterations because the sample sizes are doubling (c1 = 2). The times to generate the random

numbers, transform them to random variates, and compute the observations y quickly dominate

the fixed cost of each iteration.

Times for four RA algorithms, two versions of both DRA and IRA, are shown. Both versions,

which correspond to implementations using two different ω’s, create the same realizations and

therefore have the same statistical properties; they differ only in the method of computing. The

columns labeled R.N. correspond to an implementation in which the random numbers are stored

when first generated. The columns labeled Seed correspond to storing only the initial random-

28

number seed, from which random numbers are recomputed as needed. The latter is simpler to

code, primarily because it requires a fixed amount of storage. The R.N. versions are faster, but

negligibly so for IRA. The decrease in DRA times is greater than for IRA because in DRA each

random number is used again and again, whereas in IRA each random number is used in only one

retrospective iteration. The ratio of the IRA time to the DRA time is about 1 for the Seed versions

and 1.2 for the R.N. versions. These results are consistent with our argument in Section 4.2 that

the ratio lies in [1, u), where u = 2 here. The speed improvement could differ considerably with

yet another choice of ω (e.g., storing the random samples or, better, only the sample means and

standard deviations) or in another application.

A natural way to compare algorithm performance is via the generalized mse, the product of

cpu time and mse. In this sense, IRA dominates DRA. The IRA mse is only half of the DRA mse,

while the cpu-time ratio (IRA to DRA) is no larger than 2 for any choices of ω. Overall, IRA/R.N.

has the best generalized mse. IRA/Seed, which is only a bit slower, is likely to be a better choice

in practice because it is easier to implement and requires finite storage, qualities not measured in

generalized mse. If the algorithms are to be run for many iterations, R.N. versions would eventually

require disk (rather than random-access memory) storage, and the elapsed times would quickly be

longer than Seed versions.

5.2 Comparing IRA and Stochastic Approximation

We now compare an IRA algorithm to a stochastic approximation (SA) algorithm; in the GCTI

application IRA has much smaller sampling error than SA. As shown in Figure 2, RA algorithms are

substantially more efficient than Robbins and Monro’s SA, the classical black-box solution method,

even when it is tuned to the application.

Figure 2 compares IRA/Seed and SA using the GCTI application with tolerance parameters

n = 5, α = .5, γ = .9, and normal population, for which x∗ = .6857. The IRA/Seed algorithm

used here is the same as that in Table 1 except that the initial point x0 is generated randomly

from the normal distribution with mean x∗ and variance 104 (denoted by N (x∗, 104)). The early

convergence rate of SA depends on the initial point and the sample size (for example, Chen (1994,

p. 71) and Fu and Healy (1992)), although the asymptotic convergence rate does not. We generate

the initial point from N (x∗, 1) and define each SA iteration to use the average of 5 observations,

29

0

10

20

30

40

50

60

0 1000 2000 3000 4000 5000 6000 7000 8000

N
 *

 M
S

E

N = number of y’s generated

 IRA: x ~ N(x*,10),

SA: x ~ N(x*,1), m=5
0

0

4-

δ = 10 , c = 1
1 2

m = 2, c = 2,
11

4

Figure 2: Comparison of IRA and SA Algorithms

which is the (empirically determined) optimal value associated with this random initial point (see

Chen 1994, p. 71). The performance measure here is again generalized mse, except that now

computing effort is measured by N , the total number of y(x) observations computed. On a Sun

SparcStation 2 computer, N = 8000 corresponds to about 30 seconds of cpu time. Figure 2 shows

that IRA/Seed, despite having less information about the location of the root, and not being tuned

to the application, converges faster than SA for these numbers of observations. The sample size N

needed for the SA generalized mse to drop below that of IRA is, as can be inferred from the figure,

so large that in practice IRA performance is substantially better.

That the SA asymptotic generalized mse is less might seem surprising. The asymptotic gen-

eralized mse ratio (IRA to SA) for this Thiokol example is about 2.3, which is quite close to the

asymptotic number of points at which IRA evaluates ȳmi
(x) at each retrospective iteration i (Chen

1994). Therefore, the asymptotic performance seems to be the same if we count sample-path ap-

proximations for IRA and function evaluations for SA. This makes sense because asymptotically

the function g is linear and the slope at the root is known, so more than one function evaluation

is wasted. But the additional function evaluations are, in fact, quite useful early, when g is not

linear, maybe explaining why IRA performs better than SA in practice.

30

6 CONCLUSIONS

We introduce a family of retrospective approximation (RA) algorithms to solve SRFPs. The al-

gorithms are based on solving sample-path approximations to the problem of interest; that is,

pseudorandom data from the problem are generated and used to create a sequence of approximate

problems, which have increasing sample sizes and decreasing solution-error tolerances. Our algo-

rithms differ from retrospective optimization algorithms in that they are iterative and in that they

explicitly allow some error in the solutions to the approximate problems. The latter is necessary if

the approximate problems are to be solved numerically.

In addition to introducing retrospective approximation algorithms, we prove convergence for

one-dimensional SRFPs, we discuss implementation issues and specify two algorithm variations:

dependent retrospective approximation (DRA), which uses all past observations at each iteration,

and independent retrospective approximation (IRA), which uses each observation in only one iter-

ation. Monte Carlo results for an application, as well as some analytical arguments, indicate that

IRA is superior to DRA. Monte Carlo results of a related application show that IRA has smaller

generalized mean squared error than a version of stochastic approximation that is tuned to the

application.

Recommendations for future work in this area include: (1) proposing specific RA algorithms

and proving convergence for multi-dimensional SRFPs; (2) deriving asymptotic distributions for

the root estimator; and (3) extending RA’s application on SRFPs to more general optimization

problems.

ACKNOWLEDGMENTS

This research is supported by Purdue Research Foundation Grant 690-1287-2104, Thiokol Corpora-

tion Contract A46111430, and NSF Grant DMS 93-00058. We thank Colm O’Cinneide for helpful

discussions, Anton Kleywegt for helpful comments, and IIE Transactions editor Jim Wilson for

thoughtful suggestions that substantially improved the presentation.

31

REFERENCES

Andradóttir, S. (1992). An Empirical Comparison of Stochastic Approximation Methods for Sim-

ulation Optimization. Proceedings of the First Industrial Engineering Research Conference,

ed. Klutke, G., Mitta, D. A., Nnaji, B. O., and Seiford, L. M., 471–475. Norcross, Georgia:

Institute of Industrial Engineers.

Banks, J., J. S. Carson, II, and B. L. Nelson (1996). Discrete-Event System Simulation, Upper

Saddle River, NJ: Prentice Hall.

Billingsley, P. (1979). Probability and Measure, New York, NY: John Wiley & Sons.

Chen, H. (1994). Stochastic Root Finding in System Design, Ph.D. Dissertation, School of Industrial

Engineering, Purdue University, West Lafayette, Indiana.

Chen, H.-S. (1998). Multi-dimensional Independent Retrospective Approximation for Making Re-

source Allocation Decisions in Manufacturing Systems, Master Thesis, Department of Industrial

Engineering, Da-Yeh University, Chang-Hwa, TAIWAN. Chinese.

Chen, H. and B. W. Schmeiser (1994a). Stochastic Root Finding: Problem Definition, Examples,

and Algorithms. Proceedings of the Third Industrial Engineering Research Conference, ed. L.

Burke and J. Jackman, 605–610. Norcross, Georgia: Institute of Industrial Engineers.

Chen, H. and B. W. Schmeiser (1994b). Retrospective Approximation Algorithms for Stochas-

tic Root Finding. Proceedings of the 1994 Winter Simulation Conference, ed. J.D. Tew, S.

Manivannan, D.A. Sadowski, and A.F. Seila, 255–261. Piscataway, New Jersey: Institute of

Electrical and Electronics Engineers.

Chen, H. and B. W. Schmeiser (1995). Monte Carlo Estimation for Guaranteed-Coverage Nonnor-

mal Tolerance Intervals. Journal of Statistical Computation and Simulation 51, 223–238.

Chen, H. and T.-K. Yang (1999). Computation of the Sample Size and Coverage for Guaranteed-

Coverage Nonnormal Tolerance Intervals. Journal of Statistical Computation and Simulation

63, 299–320.

Conte, S. D. and C. de Boor (1980). Elementary Numerical Analysis: An Algorithmic Approach,

New York, NY: McGraw-Hill, Inc.

Fu, M. C. (1994). Optimization via Simulation: A Review. Annals of Operations Research 53,

199–247.

32

Fu, M. C. and K. J. Healy (1992). Simulation Optimization of (s, S) Inventory Systems. Proceedings

of the 1992 Winter Simulation Conference, ed. J.J. Swain, D. Goldsman, R.C. Crain, and J.R.

Wilson, 506–514. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.

Fu, M. C. and S. D. Hill (1997). Optimization of Discrete Event System via Simultaneous Pertur-

bation. IIE Transactions 29, 233–243.

Gürkan, G., A. Y. Özge, and S. M. Robinson (1994). Sample-Path Optimization in Simulation.

Proceedings of the 1994 Winter Simulation Conference, ed. J.D. Tew, S. Manivannan, D.A. Sad-

owski, and A.F. Seila, 247–254. Piscataway, New Jersey: Institute of Electrical and Electronics

Engineers.

Healy, K. J. (1992). Optimizing Stochastic Systems: A Retrospective/Deterministic Approach,

Ph.D. Dissertation, Department of Operations Research, Cornell University, Ithaca, NY.

Healy, K. J. and L. W. Schruben (1991). Retrospective Simulation Response Optimization. Pro-

ceedings of the 1991 Winter Simulation Conference, ed. B.L. Nelson, W.D. Kelton, and G.M.

Clark, 954–957. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.

Healy, K. J. and Y. Xu (1994). Simulation Based Retrospective Approaches to Stochastic System

Optimization. Research Memorandum No. 94-14, School of Industrial Engineering, Purdue

University, West Lafayette, IN.

Healy, K. J. and Y. Xu (1995). Simulation Optimization of a Bulk Server. Research Memorandum

No. 95-3, School of Industrial Engineering, Purdue University, West Lafayette, IN.

Homem-de-Mello, T., A. Shapiro, and M. L. Spearman (1999). Finding Optimal Material Release

Times Using Simulation Based Optimization. Management Science 45, 86–102.

Huber, P. J. (1964). Robust Estimation of a Location Parameter. Annals of Mathematical Statistics

35, 73-101.

Johnson, N. L. (1949). Systems of Frequency Curves Generated by Methods of Translation. Bio-

metrika 36, 149–176.

Law, A. M. and W. D. Kelton (2000). Simulation Modeling and Analysis, 3rd ed., New York, NY:

McGraw-Hill, Inc.

L’Ecuyer, P., N. Giroux and P. W. Glynn (1994). Stochastic Optimization by Simulation: Numeri-

cal Experiments with the M/M/1 Queue in Steady State. Management Science 40, 1245–1261.

L’Ecuyer, P. and P. W. Glynn (1994). Stochastic Optimization by Simulation: Convergence Proofs

33

for the GI/G/1 Queue in Steady State. Management Science 40, 1562–1578.

Loéve, M. (1977). Probability Theory I, New York, NY: Springer-Verlag.

Plambeck, E. L., B.-R. Fu, S. M. Robinson, and R. Suri (1996). Sample-Path Optimization of

Convex Stochastic Performance Functions. Mathematical Programming 75, 137-176.

Robbins, H. and S. Monro (1951). A Stochastic Approximation Method. Annals of Mathematical

Statistics 22, 400–407.

Robinson, S. M. (1996). Analysis of Sample-Path Optimization. Mathematics of Operations Re-

search 21, 513–528.

Rubinstein, R. Y. and A. Shapiro (1993). Discrete Event Systems—Sensitivity Analysis and Sto-

chastic Optimization by the Score Function Method, New York, NY: John Wiley & Sons.

Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics, New York, NY: John

Wiley & Sons.

Shapiro, A. (1996). Simulation-Based Optimization—Convergence Analysis and Statistical Infer-

ence. Communications in Statistics—Stochastic Models 12, 425–454.

Shapiro, A. and Y. Wardi (1996). Convergence Analysis of Stochastic Algorithms. Mathematics of

Operations Research 21, 615–628.

Shapiro, A. and T. Homem-de-Mello (1997). A Simulation-Based Approach to Two-Stage Stochas-

tic Programming with Recourse. Mathematical Programming 81, 301–325.

Simon, B. (1998). Convergence of a Stochastic Rootfinding Procedure. Working Paper, Department

of Mathematics, University of Colorado at Denver, Denver, CO.

Appendix: Proofs of Lemmas 3 and 4

Proof of Lemma 3: Without loss of generality, assume that γ = 0. By the second assumption,

for every ε > 0, w.p.1 there exists a positive integer N (ε, ω) such that

m > N (ε, ω) implies g(x)− ε < ȳm(x; ω) < g(x) + ε for all x ∈ < .

By the first assumption g is a nondecreasing function so the inverse function g−1(a) = inf{x̃ : g(x̃) ≥
a} is also nondecreasing. Now choose a particular positive value of ε—small enough that both

34

g−1(−ε) and g−1(ε) are defined. Because ε > 0 and x∗ is the unique root, g−1(−ε) ≤ x∗ ≤ g−1(ε).

Now, consider the region of the crossing set. Because “x > g−1(ε)” implies “g(x) ≥ ε”, then

w.p.1 for every m > N (ε, ω),

ȳm(x; ω) > g(x)− ε ≥ ε − ε = 0, for every x > g−1(ε).

Similarly, w.p.1 for every m > N (ε, ω),

ȳm(x; ω) < g(x) + ε ≤ −ε + ε = 0 for every x < g−1(−ε) .

Therefore, for every m > N (ε, ω), the crossing set Cm(ω) is not empty and satisfies

Cm(ω) ⊆ [g−1(−ε), g−1(ε)] w.p.1.

To prove that the crossing set Cm(ω) is nonempty, we let

x+ ≡ inf{x : ȳm(z; ω) > 0 for every z > x} (13)

and

x− ≡ sup{x : ȳm(z; ω) < 0 for every z < x}. (14)

Since ȳm(z; ω) > 0 for every z > g−1(ε) and ȳm(z; ω) < 0 for every z < g−1(−ε), we see that

x+ ≤ g−1(ε) and x− ≥ g−1(−ε). (15)

Next we prove that

x− ≤ x+ (16)

by contradiction. Assume that x+ < x−. For every x ∈ (x+, x−), we can pick z ∈ (x+, x) arbitrarily;

and applying the definition (13) of x+, we must have ȳm(x; ω) > 0 since x > z > x+. Similarly we

can pick z′ ∈ (x, x−) arbitrarily; and applying the definition (14) of x−, we must have ȳm(x; ω) < 0

since x < z′ < x−. This is a contradiction since ȳm(x; ω) cannot be both positive and negative;

and thus the assumption that x+ < x− must be false. This establishes the inequality (16).

35

Now if x− = x+, then we see that for every neighborhood N (x+) = N (x−) of the point

x+ = x−, we can find points z and z′ satisfying

z > x+ and z ∈ N (x+) so that ȳm(z; ω) > 0

z′ < x− and z′ ∈ N (x−) = N (x+) so that ȳm(z′; ω) < 0





; (17)

and it follows immediately that x− = x+ is on the boundary of RN and on the boundary of RP .

Thus we see that in this case, x− = x+ ∈ RZ ∪RNP = Cm(ω).

If x− < x+, then both x− and x+ are crossing roots. Here we prove for x− only; the proof for

x+ is similar. For every neighborhood N (x−) of x−, we can find points z and z′ satisfying

z > x− and z ∈ N (x−) so that ȳm(z; ω) ≥ 0

z′ < x− and z′ ∈ N (x−) so that ȳm(z′; ω) < 0





; (18)

otherwise, sup{x : ȳm(z; ω) < 0 for every z < x} > x− and this contradicts the definition of x−.

There are now three cases to consider:

(a) We have ȳm(x−; ω) > 0 so that x− ∈ RP ; and it follows from (18) that x− is on the boundary

of RN or RZ so that x− ∈ RNP .

(b) We have ȳm(x−; ω) = 0; and in this case we have immediately that x− ∈ RZ .

(c) We have ȳm(x−; ω) < 0 so that x− ∈ RN ; and it follows from (18) that x− is on the boundary

of RP or RZ so that x− ∈ RNP .

Therefore, x− is a crossing root. Using a similar argument, we can show that x+ is also a crossing

root. We can summarize all of these results as follows:

x− = x+ implies that x− = x+ ∈ RZ ∪ RNP = Cm(ω)

x− < x+ implies that Cm(ω) ⊂ [x−, x+]





. (19)

Combining (16) and (19), we see that Cm(ω) must be nonempty.

Let X∗(m) be any point in Cm(ω). Because x∗ is in the interval [g−1(−ε), g−1(ε)], for every

m > N (ε, ω)

|X∗(m)− x∗| ≤ g−1(ε)− g−1(−ε) w.p.1.

36

Since ε can be arbitrarily small and x∗ is the unique root, for any selection rule defining the solution

sequence {X∗(m)},
lim

m→∞

X∗(m) = x∗, w.p.1.

Proof of Lemma 4: Without loss of generality, assume γ = 0. By the second assumption, for

every x ∈ < and every η > 0, w.p.1 there exists a positive integer N (x, η, ω) such that

m > N (x, η, ω) implies |ȳm(x; ω)− g(x)| < η.

Given any ε > 0, the first assumption implies

g(x∗ + ε) > 0 and g(x∗ − ε) < 0 .

Now, choose x = x∗ + ε and η = g(x∗ + ε), and define N1(x
∗, ε, ω) = N (x, η, ω). Then for

m > N1(x
∗, ε, ω)

|ȳm(x∗ + ε; ω)− g(x∗ + ε)| < g(x∗ + ε) w.p.1.

Therefore, w.p.1, ȳm(x∗ + ε; ω) > 0 for every m > N1(x
∗, ε, ω). Similarly, choose x = x∗ − ε and

η = −g(x∗ − ε) > 0, and define N2(x
∗, ε, ω) = N (x, η, ω). Then, for m > N2(x

∗, ε, ω),

|ȳm(x∗ − ε; ω)− g(x∗− ε)| < −g(x∗ − ε) w.p.1.

Therefore, w.p.1, ȳm(x∗ − ε; ω) < 0 for every m > N2(x
∗, ε, ω).

Define N3(x
∗, ε, ω) = max{N1(x

∗, ε, ω), N2(x
∗, ε, ω)}. Then, for every m > N3(x

∗, ε, ω)

ȳm(x∗ − ε; ω) < 0 < ȳm(x∗ + ε; ω) w.p.1.

Therefore, w.p.1 there exists at least one crossing root in [x∗− ε, x∗ + ε] and hence the crossing set

Cm(ω) is not empty. (The argument is similar to that in the proof of Lemma 3.) Furthermore, by

the third assumption, Cm(ω) = [xL(ω), xU(ω)] for every m, where xL = sup{ x : ȳm(x; ω) < γ }
and xU = inf{ x : ȳm(x; ω) > γ }. Hence, for every m > N3(x

∗, ε, ω)

x∗ − ε ≤ xL ≤ xU ≤ x∗ + ε w.p.1,

37

and therefore Cm(ω) ⊆ [x∗−ε, x∗ +ε] w.p.1. Because X∗(m) is a point selected from Cm(ω), then

w.p.1 every X∗(m) ∈ [x∗− ε, x∗ + ε] for m > N3(x
∗, ε, ω). Hence, for any selection rule defining

the solution sequence {X∗(m)},

lim
m→∞

X∗(m) = x∗ w.p.1.

Biographies

Huifen Chen is an Associate Professor in the Department of Industrial Engineering at Chung Yuan

Christian University in Taiwan. She completed her Ph.D. in the School of Industrial Engineering at

Purdue University in August 1994. She received a B.S. degree in accounting from National Cheng-

Kung University in Taiwan in 1986 and an M.S. degree in statistics from Purdue University in 1990.

Her current research focuses on stochastic root finding, random-vector generation, non-normal

tolerance intervals, and stochastic operations research applied in reliability and transportation.

Bruce Schmeiser is a professor in the School of Industrial Engineering at Purdue University. He

received his Ph.D. from the School of Industrial and Systems Engineering at Georgia Tech in 1975;

his undergraduate degree in the mathematical sciences and master’s degree in industrial engineering

are from The University of Iowa. His research interests include stochastic root finding, simulation

output analysis, input modeling, random-variate generation, variance-reduction techniques, Markov

chain Monte Carlo methods, and applied operations research. He has served in a variety of roles

for the IIE, INFORMS and the Winter Simulation Conference.

38

Table 1: DRA and IRA comparison for a GCTI problem

Squared Bias Variance MSE E[V̂ar(x̄i)] CPU Time (sec./1000 repl.)
DRA IRA

i DRA IRA DRA IRA DRA IRA DRA IRA R.N. Seed R.N. Seed
1 .42 .42 .17 .17 .59 .59 — — 2 3 2 3
2 .26 .27 .14 .09 .40 .36 .17 .075 6 9 6 9
3 .10 .13 .15 .08 .25 .21 .15 .054 8 12 8 12
4 .03 .05 .15 .07 .18 .12 .11 .040 12 18 13 18
5 .00 .01 .14 .06 .14 .07 .08 .030 19 27 20 32
6 .00 .00 .11 .04 .11 .04 .06 .021 33 46 40 52
7 .000 .000 .046 .024 .046 .024 .027 .012 61 87 75 96
8 .000 .000 .022 .012 .022 .012 .015 .007 121 168 143 178
9 .000 .000 .010 .006 .010 .006 .008 .004 227 322 278 345

10 .000 .000 .005 .003 .005 .003 .004 .002 435 660 540 670

39

