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ABSTRACT

We propose Monte Carlo algorithms to estimate the sample size and coverage of guaranteed-coverage toler-

ance intervals for nonnormal distributions. The current literature focuses on computation of the tolerance

factor, but addresses less on the sample size, coverage, and confidence, which need to be set prior to the

tolerance factor. The coverage estimation algorithm, which always converges, is based on our proof that

the coverage is a quantile of an observable random variable. The sample-size estimation algorithm, which

seems to converge in empirical results if the root is unique, is based on the general stochastic root-finding

algorithm, retrospective approximation. Following previous sensitivity analysis for the tolerance factor, we

analyze relationships among the sample size, coverage, and confidence.

KEYWORDS: Quantile, Reliability, Retrospective Approximation, Stochastic Root Finding.

1 INTRODUCTION

We consider guaranteed-coverage tolerance intervals (GCTIs) for random product characteristic X

whose distribution FX is continuous but has unknown mean µ and unknown variance σ2. Based on

a random sample {X1,X2, ...,Xn} from the distribution FX , a GCTI for X is defined as I(X̄, S, k),

where I(X̄, S, k) equals (X̄ − k S,∞) for lower one-sided, (−∞, X̄ + k S) for upper one-sided, and

(X̄ − k S, X̄ + k S) for two-sided intervals (Wald and Wolfowitz, 1946), where X̄ =
∑n

i=1 Xi/n and

S2 =
∑n

i=1(Xi − X̄)2/(n − 1) . For such intervals, a practitioner can state with confidence γ that
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the proportion of the population in the tolerance interval I(X̄, S, k), based on a sample of size n,

is at least α. The four tolerance parameters—sample size n ∈ {2, 3, ...}, tolerance factor k ∈ R,

coverage α ∈ (0, 1), and confidence γ ∈ (0, 1)—are determined so that

PrX̄,S{ PrX{ X ∈ I(X̄, S, k) } ≥ α } = γ. (1)

GCTIs have wide uses in quality control and system reliability. For more examples, see Chen and

Schmeiser (1995), Patel (1986), and Odeh and Owen (1980).

The existing literature focuses on computation of the tolerance factor k. Most of it assumes

normal distributions, e.g., Wald and Wolfowitz (1946), Guttman (1970), Aitchison and Dunsmore

(1975), Odeh and Owen (1980), and Eberhardt et al. (1989). The one-sided tolerance factor for nor-

mal distributions is a multiple of a noncentral t quantile (see Section 2). The two-sided factor can be

computed by solving a nonlinear equation. Chen and Schmeiser (1995) propose quantile estimation

methods to compute the tolerance factor for nonnormal parametric distributions (Section 2). Other

tolerance-interval studies for nonnormal distributions include Aitchison and Dunsmore (1975) and

Patel (1986), who discuss different forms of tolerance intervals for binomial, Poisson, exponen-

tial, gamma, and other standard populations. Guenther (1985) provides an extensive discussion of

distribution-free tolerance intervals.

Before computation of the tolerance factor, values of n, α, and γ need to be set. Consider a

reliability program adopted by a rocket manufacturer. The tested item is considered defective if

its characteristic measurement falls below the tolerance limit X̄ − kS, based on a random sample

of size n. The reliability engineer wants to state with γ confidence that the system reliability is at

least α; that is, with confidence γ, the probability that the characteristic measurement falls below

the tolerance limit is less than (1 − α). To achieve the desired values of the minimum reliability

α and confidence γ, the sample size n must be chosen appropriately. The following “sample-size

determination procedure” is used to determine the sample size. To search for the sample size, the

tentative tolerance factor k is set so that the tolerance limit X̄ − kS equals the lower specification

limit L (the minimum value required).
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Sample-size determination procedure: Given coverage α and confidence γ:

1. Compute the sample size n satisfying Equation 1 for a given nominal value of k.

2. Collect a sample {x1, ..., xn} (from the real system, instead of the Monte Carlo experi-

ment) and compute the tolerance factor

k = (x̄− L)/s,

where x̄ =
∑n

i=1 xi/n, s2 =
∑n

i=1(xi − x̄)2/(n − 1), and constant L is the lower specifi-

cation limit of product characteristic.

3. Compute the coverage α̃ so that with confidence γ the interval (X̄ − kS,∞) contains at

least proportion α̃ of the population, i.e., solve the following equation for α̃:

PrX̄,S{ PrX{ X ≥ X̄ − kS) } ≥ α̃ } = γ. (2)

4. If α̃ > α, stop and return n; otherwise, update n and go to Step 2.

Our motivation for computing the sample size and coverage for nonnormal distributions arises

from the one-dimensional root-finding problems in Steps 1 and 3. Step 1 computes the sample size

n satisfying Equation 1, given k, α, γ, and the distribution shape (e.g., beta); Step 3 computes the

coverage α̃ satisfying Equation 2 (or α for Equation 1), given γ, n, k, and the distribution shape.

A traditional approach to these two problems is to build an extensive table of values for the four

tolerance parameters satisfying Equation 1 for each distribution of interest. With such a table, the

practitioner can choose values of the sample size and coverage from the table whenever they are

needed. The drawbacks to this approach are that any table with a wide range of tolerance-parameter

values and distribution types would be huge, and that interpolation—or worse, extrapolation—may

be used to approximate desired values that are not listed in the table.

In this research, we are interested in black-box Monte Carlo algorithms that compute any

tolerance parameter of interest. That is, we consider the problem of finding any lower one-sided

tolerance parameter (e.g., n) that satisfies the tolerance logic (Equation 1) when the other three

parameters (e.g., k, α, and γ) and the distribution shape are known. Specifically, the research

problem is as follows:
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Research Problem: Given

(a) the shape of continuous distribution function FX() with unknown mean µ and unknown

variance σ2,

(b) three of the following four tolerance parameters:

• sample size n,

• tolerance factor k,

• coverage α,

• confidence γ.

Find: the other unknown tolerance parameter satisfying the tolerance logic, i.e.,

PrX̄,S{ PrX{ X ≥ X̄ − k S } ≥ α } = γ. (3)

The assumption that the distribution shape is known means that all standardized moments are

known but the mean or variance is unknown. For example, the reliability engineer may model

the product-characteristic distribution as a beta distribution with unknown mean and unknown

variance. In case the real data do not adequately fit any standard distributions (e.g. distributions

usually presented in introductory Statistics textbooks), practitioners can define the distribution

through a simulation routine that can generate observations if the mean and variance are also spec-

ified. (See Law and Kelton, 1991, page 462, for random-variate generation methods.) This is valid

because our solution approaches are based on the Monte Carlo sampling. In this paper, we focus

on estimation algorithms for lower one-sided GCTIs. The proposed algorithms in Section 3 can

be modified easily for upper one-sided GCTIs and extended for two-sided GCTIs. Furthermore,

we propose algorithms only for the sample size and the coverage. The tolerance factor k can be

estimated by the quantile estimation methods proposed in Chen and Schmeiser (1995). Further-

more, estimating the confidence γ is straightforward (Schmeiser, 1990). We discuss the methods of

computing k and γ in Section 2.

The rest of this paper is organized as follows: In Section 2, we review the related literature. In

Section 3, we propose Monte Carlo estimation algorithms for the coverage and sample size. The

coverage estimator always converges; the sample-size estimator seems to converge in our simulation

results if the root is unique. In Section 4, we continue Chen and Schmeiser’s (1995) sensitivity
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analysis for the sample size, coverage, and confidence. In Section 5, we illustrate an example to

show the application of our coverage and sample-size computation software.

2 LITERATURE REVIEW

This section reviews the literature on computation of the four tolerance parameters. The confidence

estimator and tolerance-factor estimator discussed here are designed for nonnormal parametric

distributions and the coverage estimator is for normal distributions. The literature on sample size

is different from, but related to, our problem. We discuss the computation of these four tolerance

parameters in turn.

(1) Confidence:

We consider the problem of computing the confidence that the tolerance interval [X̄ − kS,∞)

contains at least proportion α of the measurements for nonnormal distributions. That is, computing

the probability γ = PrX̄,S{ PrX{ X ≥ X̄−k S } ≥ α }, given n, k, α, and the shape of distribution

FX . Numerical computation of γ may not be efficient because γ is a (n + 1)-dimensional integral

(except for special cases like normal distributions, in which γ is a noncentral t percentage point).

However, γ can be estimated easily by Monte Carlo simulation. We can generate m samples

{x11, ..., x1n},..., {xm1, ..., xmn} from the distribution FX , using any arbitrary values of µ and σ.

(Notice that γ does not depend on the unknown mean µ or standard deviation σ of distribution FX .)

For each sample, we compute the sample mean x̄i and sample standard deviation si of {xi1, ..., xin},

i = 1, ...,m. Then the confidence γ can be estimated by

γ̂ =
m∑

i=1

yi/m, (4)

where

yi =





1 if PrX {X ≥ x̄i − k si} ≥ α

0 otherwise
.

It is easy to show that the estimate γ̂ is unbiased with variance γ(1− γ)/m.
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(2) Tolerance Factor:

Chen and Schmeiser (1995) propose quantile estimation methods for computing the tolerance

factor for nonnormal distributions, as defined earlier in the research problem. They show that the

tolerance factor k satisfying Equation 3 is the γth quantile of the random variable K = [X̄−F−1
X (1−

α)]/S. This result follows from the equivalence of Equation 3 and PrK{K ≤ k} = γ. Notice that

K is observable because K does not depend on the population mean µ or standard deviation σ.

Therefore we can generate m samples of size n from distribution FX , using any arbitrary values

of µ and σ, and compute the sample mean x̄i and sample standard deviation si of the ith sample,

i = 1, ...,m. Let ki = [x̄i − F−1
X (1 − α)]/si; then we have m realizations k1,...,km of the random

variable K. Hence the tolerance factor estimate is k̂ = ω k(b(m+1)γc) + (1 − ω) k(d(m+1)γe), the

convex combination of the b(m + 1)γcth and d(m + 1)γeth order statistics, where the weight is

ω = d(m + 1)γe − (m + 1)γ. (Here, bac is the biggest integer less than or equal to a and dae is the

smallest integer greater than or equal to a.) The asymptotic distribution
√

m(k̂−k) is normal with

mean 0 and variance γ(1 − γ)/[f2
K(k)], where fK(·) is the density function of the random variable

K. (See Lehmann, 1983, p 394.)

If the distribution FX is normal, then random variable
√

nK is a noncentral t with n−1 degrees

of freedom and noncentrality parameter
√

nzα, where zα is the αth quantile of the standard normal.

Therefore, the tolerance factor is given by k = tn−1,γ(
√

nzα) /
√

n, where tν,γ(δ) is the γth quantile

of the noncentral t with ν degrees of freedom and noncentrality δ. For this special case, numerical

computation of k would be more efficient.

(3) Coverage:

Owen and Hua (1977) derive numerical methods for computing the coverage for normal distribu-

tions, i.e., solving Equation 3 for α, given n, k, γ, and the normal distribution shape. The purpose

is to obtain the γ-confidence limit (i.e., α) for the random coverage PrX{X ≥ X̄ − kS}. They

use the result
√

nk = tn−1,γ(
√

nzα) and suggest searching for the noncentrality
√

nα so that the

noncentral t (i.e.,
√

nK) percentage point at
√

nk is γ. However, they did not mention any search

methods. Odeh and Owen (1980) provide tables of α values, which are computed by Newton’s

method (see page 274).

In the case of nonnormal distributions, the random variable
√

nK may not have noncentral t
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or other standard distributions. Numerical evaluation of α is difficult. In Section 3.1, we propose

a quantile estimation approach that requires no root search.

(4) Sample Size:

Most literature on the sample size assumes normal distributions and addresses a problem slightly

different from ours. In additional to the criterion of Equation 3, another criterion is added so that

the tolerance interval does not cover too large a proportion of the population, relative to the lower

limit α. When the sample size is very small, the interval becomes very wide and is of little use.

Faulkenberry and Weeks (1968), Faulkenberry and Daly (1970), and Kirkpatrick (1977) suggest a

second criterion of PrX̄,S{ PrX{ X ≥ X̄−k S } ≥ α′ } = δ, where α′ > α and δ is small. Then, the

confidence that the random coverage PrX{ X ≥ X̄ − k S } lies between α and α′ is (γ − δ). Other

variations of the second criterion include controlling both limits of the random coverage around α

(Wilks, 1941, and Odeh et al., 1989) and controlling coverage on both tails of two-sided intervals

(Chou and Mee 1984). Since there are two criteria (i.e., two equations), this procedure determines

not only the sample size but also the tolerance factor, while α and γ are pre-chosen values.

3 METHODS

In Sections 3.1 and 3.2, we propose algorithms to solve Equation 3 for the nonnormal coverage α and

for the nonnormal sample size n, respectively. To estimate α, we invert the root-finding equation

to show that α is a quantile of an observable random variable and then estimate α using order

statistics. To estimate n, we apply retrospective approximation algorithms developed by Chen and

Schmeiser (1994b), with small changes for the discrete root-finding function of the sample size n.

We show that the estimate of α always converges and that if the root is unique, the estimate of n

seems to converge in our simulation results.

3.1 Computing the coverage

We consider finding the coverage α for nonnormal distributions, such that the tolerance interval

contains at least proportion α of the population, with confidence γ. That is, we solve Equation 3

for α, given values of n, k, γ, and the distribution shape. We propose an estimation method similar
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to the quantile estimation method for the tolerance factor k (Section 2). Analogous to the random

variable K for the tolerance factor, we define the random variable C = PrX{ X ≥ X̄ − k S }, the

random coverage of the tolerance interval. Then Equation 3 is equivalent to the equation

PrC{C ≥ α } = γ.

Hence α is the (1 − γ)th quantile of the random variable C. Again, the random variable C is

observable because it does not depend on the mean µ or standard deviation σ of distribution FX .

Therefore, we can generate m independent Monte Carlo observations of C, using arbitrary values

of µ and σ. Then we can estimate α by

α̂ = ω C(b(m+1)(1−γ)c) + (1− ω) C(d(m+1)(1−γ)e), (5)

the convex combination of the b(m + 1)(1− γ)cth and d(m + 1)(1 − γ)eth order statistics, where

the weight is ω = d(m + 1)(1 − γ)e−(m+1)(1−γ) . Specifically, the algorithm performs as follows.

Given: sample size n, tolerance factor k, confidence γ, and the distribution shape.

Procedure:

1. Independently generate m random samples {x11, ..., x1n},..., {xm1, ..., xmn} from the distrib-

ution FX using any arbitrary values of µ and σ.

2. Compute the sample mean x̄i and standard deviation si for i = 1, ...,m.

3. Compute ci = PrX{ X ≥ x̄i − k si } for i = 1, ...,m.

4. Compute α̂ from c1, c2, ..., cm using Equation 5.

By Lehmann (1983, p. 394), the asymptotic distribution of α̂ is

√
m(α̂− α)→ N(0,

γ(1− γ)
f2

C(α)
), (6)

where fC(·) is the density function of C. Hence, the estimator α̂ always converges at rate O(1/
√

m).

In the case of a normal population, the probability PrC{C ≤ α} is the cumulative probability

at point
√

nk of a noncentral t with n− 1 degrees of freedom and noncentrality parameter
√

nzα.

For this special case, α can be computed numerically such that with the noncentrality
√

nzα, the

noncentral-t cumulative probability at
√

nk is γ (See Section 2, (3)).
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3.2 Computing the Sample Size

Here we consider finding the sample size n for nonnormal distributions such that a practitioner

can state with confidence γ that the tolerance interval [X̄ − kS,∞), based on a sample of size

n, contains at least the proportion α of the population. That is, we solve Equation 3 for the

root n, given values of k, α, γ, and the distribution shape. Unlike in Section 3.1, it is difficult

here to invert the root-finding function to express n as a statistical constant, e.g., quantile. We

implement the general stochastic root-finding algorithm, retrospective approximation (RA), with

small modifications. Our simulation results show that when the root is unique, the modified RA

seems to converge to the root despite lack of convergence proof. To emphasize their dependence

on the sample size n, we denote the sample mean X̄ and sample standard deviation S by X̄n and

Sn. Furthermore, for convenience, we denote the root-finding function of any sample size ñ by

g(ñ; k, α) = PrX̄ñ,Sñ
{ PrX{ X ≥ X̄ñ − k Sñ } ≥ α } , the confidence that the random coverage

is at least α. It follows that Equation 3 is equivalent to the equation g(n; k, α) = γ. We want to

solve this equation for n. For the case of normal population, the sample size n can be computed

numerically. As mentioned in Section 3.1, g(n; k, α) is the percentage point Pr{Tn−1(
√

nzα) ≤
√

nk}

of the noncentral t random variable Tn−1(
√

nzα) with n− 1 degrees of freedom and noncentrality

parameter
√

nzα. For this special case, the sample size n can be computed numerically by searching

for the degrees of freedom (n− 1) such that the noncentral-t percentage point at
√

nk is γ.

Knowing properties of the root-finding function is useful for solving the equation. The function

g has four properties: (1) Function g(ñ; ·, ·) is discrete because the sample size ñ ∈ {2, 3, 4, ...}.

(2) Function g(ñ; ·, ·) is nonmonotonic with respect to ñ, even if FX is normal. Since confidence

γ increases with the tolerance factor k but k is not necessarily monotonic with the sample size n

(Chen and Schmeiser, 1995), the confidence is not monotonic with the sample size. Hence, g(ñ; ·, ·)

is not monotonic. Figures 1(a) and 1(b) illustrate two nonmonotonic functions g, respectively:

g(ñ;−1.2067, .1) for the normal distribution and g(ñ; .4125, .99) for the Johnson SB distribution

with skewness 4 and kurtosis 30. The Johnson distribution family, proposed by Johnson (1949),

has three transformations of the standard normal distribution, resulting in lognormal, bounded

(denoted as SB), and unbounded (denoted as SU) distributions (see Appendix). From Figure 1(a)

we see that the function g(ñ;−1.2067, .1) with normal distribution decreases with ñ first and then

increases. Figrue 1(b) shows that g(ñ; .4125, .99) is convex for smaller ñ and concave for larger ñ.
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Figure 1: Plot of Two Nonmonotonic Functions g(ñ; k, α): In (a), k = −1.2067, α = 0.1, and the
distribution shape is normal; in (b), k = .4125, α = 0.99, and the distribution shape is Johnson SB

with skewness 4 and kurtosis 30

(3) The limiting value of g(ñ; k, α) is

limñ→∞ g(ñ; k, α) =





1 if k ≥ k∞

0 otherwise
,

where k∞ = [µ − F−1
X (1 − α)]/σ. (See Figure 3.) (4) The root n may not be unique or may not

exist, even for the normal population. For example, if FX(·) is symmetric at mean, g(ñ; 0, 0.5)

equals 0.5 for any sample size ñ. Therefore, the equation g(ñ; 0, 0.5) = γ has an infinite number of

roots if γ = 0.5, and has no root, otherwise. Figure 1 (b) also shows another example of multiple

roots: the equation g(n; .4125, .99) = .001 has two roots 10 and 71.

Solving equation g(ñ; k, α) = γ for the root ñ = n is a stochastic root-finding problem (SRFP,

Chen and Schmeiser, 1994a), solving a deterministic equation using only estimates of function

values. As mentioned in Section 2, the function value g(ñ; k, α) is an (ñ + 1) dimensional integral,

and therefore numerical computation of g may not be efficient (except for special cases like normal

distributions). However, we can estimate the function value easily via simulation experiment.

Equation 4 shows an unbiased estimator ĝ(ñ; k, α) =
∑m

i=1 Yi/m of g(ñ; k, α), where Yi equals 1 if

PrX{X ≥ X̄i − kSi} ≥ α and equals 0, otherwise, for i = 1, ...,m.

Chen and Schmeiser (1994b) propose retrospective approximation (RA) algorithms for SRFPs,

with continuous root-finding functions over the real line. Let ĝ(ñ; k, α, ω) denote the estimate
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ĝ(ñ; k, α) generated from the simulation experiment using a vector of m pseudo-random number

streams ω = (ω1, ..., ωm). Each stream ωi is used to generate the ith sample {xi1, ..., xiñ} from

distribution FX , where i = 1, ...,m. RA iteratively solves a sequence of sample-path equations

{ĝ(N∗
i ; k, α, ωi) = γ : i = 1, 2, ...}, where ωi = (ωi1, ..., ωimi) and the sequence {m1,m2, ...} is

increasing. In each iteration, the sample-path equation is solved until a bounding interval of the

retrospective root N∗
i is found, starting at an initial point and moving by a step-size δi, which is

doubled each time. The linear interpolate of the bounds, called Ni, is returned. After i iterations,

the root estimator N̄i is then the weighted average of those solutions N1, N2, ..., Ni, where the jth

weight is proportional to the number of samples mj for j = 1, ..., i. RA assumes that the root-

finding function is continuous over the whole real line, lies below γ over the domain below the true

root, and lies above γ over the domain above the root. Additional conditions on g and ĝ guarantee

that the RA root estimator converges to the true root with probability one (Chen, 1994). A specific

RA version, called bounding independent RA (BIRA), performs as follows.

BIRA Algorithm:

Given algorithm parameters: the standard error tolerance σ0, initial solution N0, initial number

of samples m1, initial step size δ1, the number-of-samples multiplier c1, and the step-size

multiplier c2.

Find: the root n satisfying g(n; k, α) = γ.

Step 0. Initialize the BIRA iteration number i = 1.

Step 1. Independently generate ωi.

Step 2. Solve Equation ĝ(N∗
i ; k, α, ωi) = γ until a bounding interval of the root N∗

i is found,

starting at the point N̄i−1 (note: N̄0 = N0) and moving by step size δi, which is

doubled each time. Return the linear interpolate Ni of the bounds.

Step 3. Compute N̄i = (
∑i

j=1 mj)−1 ∑i
j=1 mjNj and its standard error estimate ŝe(N̄i) =

σN/
√∑i

j=1 mj, where σN equals
√

(i− 1)−1[
∑i

j=1 mjN2
j − (

∑i
j=1 mj)N̄2

i ] if i ≥ 2,

and 0 if i = 1.

Step 4. If ŝe(N̄i) < σ0, stop. Otherwise, compute δi+1 = bc2σN

√
(
∑i

j=1 mj)−1 + (mi+1)−1c

(note δ2 = δ1) and mi+1 = c1mi, let i←− i + 1, and go to Step 1.

Algorithm BIRA is modified to solve the sample size problem. First, in the case where k < k∞,

the root-finding function g is redefined as 1 − g and the target confidence γ is therefore changed
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to 1 − γ. Recall that BIRA assumes that g is under γ when the sample size is less than n and

above γ otherwise. When k < k∞, the limiting value of g(ñ; ·, ·) approaches 0 as the sample size ñ

goes to infinity; therefore we suspect the function g is below γ when the sample size is greater than

n. Redefining g as 1 − g is to satisfy this BIRA assumption. However, the redefinition does not

always work, e.g., for the function illustrated in Figure 1. Second, three rounding steps are added

to each BIRA iteration i because the sample size and hence the function g are discrete: (1) Round

down the step-size δi, since a small step size seems to be more efficient; (2) Round the retrospective

solution Ni to the nearest integer; (3) Round up the root estimator N̄i if k ≥ k∞, and round down

otherwise, to ensure that the confidence is at least γ.

The modified BIRA does not guarantee convergence though. Situations in which g is discrete,

g might have multiple roots, and g might not satisfy the BIRA assumption of lying below γ for

ñ < n and above γ otherwise, make the root search complicated. Despite the lack of convergence

proof, the modified BIRA algorithm seems to converge to the root in our simulation results when

the root is unique. Even when the root is not unique, if the initial solution N0 is well specified,

BIRA might still converge to one of the roots.

To evaluate the performance of the modified BIRA, we run the simulation experiment with 66

design points, each for different combinations of distribution shape, α, γ and k. For the experiment,

we choose the Johnson distribution family (see Appendix) for the distribution FX . The skewness α3

and kurtosis α4, the third and fourth standardized moments, are used to measure the distribution

shape, where each specified (α3, α4) corresponds to a unique Johnson distribution shape. We

arbitrarily use µ = 0 and σ = 1, since the sample size n is not a function of µ or σ. The 66 design

points are:

• (α3, α4) ∈ {(0, 3), (2, 30), (4, 30)}, corresponding to the normal, Johnson SU , and Johnson SB

distribution shapes, respectively.

• α, γ, and k:

For the normal distribution:

1. α ∈ {.1, .5, .9} and γ ∈ {.1, .5, .9}, but excluding the combination (α, γ) = (.5, .5)

because in this case k must be zero and therefore there are an infinite number of solutions

(see the fourth property of g). We further delete half the combinations because k only

changes sign when (α, γ) becomes (1− α, 1− γ); e.g., (.1, .9) and (.9, .1) have the same
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simulation performance. Therefore, only four (α, γ) combinations are included.

2. k ∈ {k5, k50, k500}, where kn′ is the tolerance factor corresponding to a root of n′; note

that kn′ is obtained by the quantile estimation method by Chen and Schmeiser (1995).

For the Johnson SU and SB distributions:

α ∈ {.001, .5, .99}, γ ∈ {.001, .5, .99}, k ∈ {k2, k10, k30}.

The simulation results for the sample size estimation are listed in Tables 1 and 2. Table 1 shows

values of n and their estimates n̂ for the normal distribution, where the estimates n̂ are computed

numerically. Table 2 shows simulation results for the Johnson SB distribution with skewness 4 and

kurtosis 30, and for the Johnson SU distribution with skewness 2 and kurtosis 30. The estimates n̂

in Table 2 are computed by the modified BIRA algorithm with 20 simulation runs. For each design

point, Table 2 shows the true sample size n, the sample size estimate n̂ (= N̄i), its standard error

estimate ŝe(n̂), and the number of observations generated from the distribution FX (denoted by

nobs) to stand for the computation time. Only significant digits are listed. The BIRA algorithm

parameters are set as follows: m1 = 10, δ1 = 1, c1 = 2, c2 = 1, N0 equals the normal n value for

the given α, γ and k, and the standard error tolerance σ0 is set so that the coefficient of variation

(i.e., σ0/n) equals 0.025. We use the coefficient of variation to eliminate the scaling problem since

the estimate’s variance tends to increase with its value.

Table 1: Sample-Size Estimators for the Normal Distribution

α γ k n n̂ α γ k n n̂

.1 .1 -2.7435 5 5 .1 .9 -.67525 5 5

.1 .1 -1.5594 50 50 .1 .9 -1.0594 50 50

.1 .1 -1.3618 500 500 .1 .9 -1.2067 500 500

.1 .5 -1.3818 5 5 .5 .1 -.68567 5 5

.1 .5 -1.2891 50 50 .5 .1 -.18372 50 50

.1 .5 -1.2823 500 499 .5 .1 -.05738 500 500

The two tables illustrate that the estimates n̂ are very close to the true root n for most design

points. For the normal distribution in Table 1, the numerical error is negligible. For the Johnson

SB and Johnson SU distributions in Table 2, the estimates n̂ seem to converge to the true root n

as the number of Monte Carlo samples goes to infinity, provided that the root is unique. For cases

of multiple roots, marked by triple asterisks in Table 2, the modified BIRA fails to find a root;
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however, if the initial point is chosen so it is close to one of the roots, BIRA might converge to

the nearest root. For example, when α = .99, γ = .001, k = .4125 and the distribution shape is

Johnson SB with skewness 4 and kurtosis 30, Equation 3 has two roots 10 and 71 (see Figure 1(b)).

If we choose the initial point N0 as 50 and the initial number of Monte Carlo samples m1 as 1000,

then BIRA will return n̂ = 71 with standard error estimate 0.1. The computation time (evaluated

by nobs) depends on, and usually increases with, the sample size n. The bigger the sample size, the

greater the number of Monte Carlo observations generated from the distribution FX , and therefore

the longer the computation time.

4 ANALYSIS

This section is an extension of the sensitivity analysis for the tolerance factor k in Chen and

Schmeiser (1995). The paper shows that k is an increasing function of α and of γ, but is not

necessarily a monotonic function of n. Here we continue the analysis for (α, γ), (n, γ), and (n, α).

We show that α is a decreasing function of γ, but α or γ is not necessarily monotonic with respect

to n. Despite nonmonotonicity, when n goes to infinity, α converges to a constant 1−FX(µ− kσ).

Analogously, when n goes to infinity, γ converges to 1 if k ≥ k∞ (recall k∞ = [µ−F−1
X (1−α)]/σ),

and converges to 0, otherwise.

As in Chen and Schmeiser (1995), we use geometric graphs to illustrate the analysis. In the

sample plane of (S, X̄), define a straight line L as the set of sample points (s, x̄) that satisfy

x̄ = ks + F−1
X (1 − α). Then the geometric graph depends on the four tolerance parameters n, k,

α, and γ, and the distribution shape as follows: (1) the spread of sample points (s, x̄) depends on

the sample size n and the distribution shape; (2) the slope of line L is k; (3) the x̄-axis intercept

F−1
X (1 − α) and s-axis intercept −F−1

X (1 − α)/k depend on α and the distribution shape; (4) the

probability that a random point (s, x̄) lies on or below line L is γ. We use these dependencies to

analyze the (α, γ), (γ, n), and (α, n) interrelations in turn.

Figure 2 shows that the coverage α is a decreasing function of the confidence γ, given values of

n, k, and the distribution shape. Fifty observations of (S, X̄) from the Johnson SB population with

µ = 0, σ = 1, skewness=4, kurtosis = 35, and sample size n = 10 are plotted. Two parallel lines,

with the same slope k = 1, correspond to α = 0.7 and 0.85. As α increases, the x̄-axis intercept

14



Figure 2: The (α, γ) Relationship: Plot of Line L in the (S, X̄) Sample Plane for Johnson SB

Distribution, n = 10, k = 1, and α = 0.7, 0.85

decreases and the s-axis intercept increases, moving the line L parallel to the right. Therefore, γ,

the probability of a point (s, x̄) lying on or below L, decreases as α increases.

Figure 3: The (n, γ) Relationship: Plot of Line L in (S, X̄) Sample Plane for Johnson SB Distrib-
ution, n = 10, 300, k = 0.5, 0.68, 1, and α = 0.85

Figure 3 shows that as the sample size n goes to infinity, the confidence γ nonmonotonically

tends to 1 if k ≥ k∞, and to 0, otherwise. The constant k∞ is the slope of the line joining the

x̄-axis intersect (0, F−1
X (1 − α)) and the limiting point (σ, µ) of (s, x̄). Fifty observations (s, x̄),

from the same population as in Figure 2, are plotted for n = 10 and n = 300. The three lines

correspond to α = 0.85 and k = 0.5, 0.68 (= k∞), and 1. When the sample size n goes to infinity,

all sample points (s, x̄) degenerate to the limiting point (σ, µ), which is (1, 0) here. For line L with
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k = 1 (greater than k∞ = 0.68), the point (σ, µ) is below the line. Hence as n goes to infinity, the

probability of lying on or below the line, i.e., γ, goes to 1. Similarly, for line L with k = 0.5 (less

than k∞), all points (s, x̄) shrink to the point (σ, µ) above the line, as n goes to infinity, and hence

γ goes to 0. The convergence of γ may not be monotonic however, even for the normal distribution.

(See Figure 1).

Figure 4: The (n, α) Relationship: Plot of γ as a Function of n for α = 0.5, 0.55, 0.6 in (a) and
α = 0.8, 0.85, 0.9 in (b), where k = 0.5, α∞ = 0.66, and the Distribution Shape is Johnson SB

Finally we show that the coverage α converges to the constant α∞ = 1−FX(µ− kσ) as n goes

to infinity, given values of k and γ, and the distribution shape. As discussed in Section 3.1, α is

the (1−γ)th quantile of the random variable C = PrX{X ≥ X̄−kS}. When n goes to infinity, the

sample mean X̄ and sample standard deviation S degenerate to µ and σ, respectively. Therefore

the random variable C, and every quantile, converge to α∞ = PrX{X ≥ µ− kσ}. Notice that α∞

depends on k and the distribution shape but not µ or σ. As for γ, coverage α may not converge

monotonically unless k is a monotonic function of n.

For cases that the monotonicity holds, Figures 4(a) and 4(b), respectively, show that α increases

with n for α ∈ (0, α∞] and decreases with n, otherwise; in both situations, α converges to α∞.

In Figure 4(a), three curves illustrate that γ is an increasing function of n and converges to 1 for

α = 0.5, 0.55, 0.6, k = 0.5, and the Johnson SB distribution with skewness 4 and kurtosis 35. The

three α values are less than α∞ (0.66 here), therefore k must be greater than their associate k∞

values (recall that α∞ = 1 − FX(µ − kσ) and k∞ = [µ − F−1
X (1 − α)]/σ), and hence the three

curves increase monotonically to γ = 1. The two line segments E1 and E2 correspond to n = 7
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and γ = 0.75, respectively. Since α is decreasing with γ, the intersections of the segment E1 and

the three curves, from top to bottom, correspond to the three increasing α values 0.5, 0.55, 0.6.

Furthermore, the intersections of the segment E2 and the three curves, from left to right, illustrate

that α increases as n increases. In the limit, α converges to α∞. Similarly, Figure 4(b) shows that

α decreases with n, converging to α∞ for α ∈ (α∞, 1). The three curves illustrate that γ decreases

to 0 as n goes to infinity for α = 0.8, 0.85, 0.9 (larger than α∞), where k and the distribution shape

are as in Figure 4(a). The intersections of the line segment E1 (corresponding to n = 12) and the

three curves illustrate three increasing α values 0.8, 0.85, 0.9, from top to bottom. Therefore the

intersections of the line segment E2 (corresponding to γ = 0.125) and the three curves illustrate

that α decreases as n increases; in the limit, α converges to α∞.

5 AN EXAMPLE

A rocket-manufacturing engineer needs to build a reliability program so that with 0.99 confidence

the engineer can state that the system reliability is at least 0.99. Suppose the testing plan is:

Accept the rocket if X ≥ X̄ − kS, based on a sample of size n. To operate the testing procedure,

the sample size n and the tolerance factor k need to be chosen. The sample-size determination

procedure is used to set the sample size. Also, from collected data on product characteristics, the

characteristic is assumed to have a Johnson SB distribution with skewness 4 and Kurtosis 30; the

mean or variance is unknown. Given the lower specification limit L = 0 and a nominal value of

k = 1.938, the sample-size procedure is as follows:

1. Compute the sample size n satisfying Equation 3, with α = .99, γ = .99, k = 1.938, and the

Johnson SB distribution with (α3, α4) = (4, 30). Table 2 gives n = 10.

2. Collect a sample {x1, ..., xn} from the system. Compute x̄ = 21, s = 10, and then k =

(x̄− L)/s = 2.1.

3. Compute the coverage α̃ satisfying Equation 2 with n = 10, k = 2.1, and γ = .99. The

computed α̃ is approximately 1.

4. Since α̃ > 0.99, stop and return n = 10.

With the sample size chosen as 10, α = 0.99, γ = 0.99, and the distribution shape as Johnson SB,

the tolerance factor is then computed as k = 1.938 (Table 2). The values of n and k are then used
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in the testing plan.
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APPENDIX: JOHNSON DISTRIBUTION FAMILY

The Johnson family, proposed by Johnson (1949), includes three transformations of the standard

normal distribution. Let X and Z denote the Johnson and standard normal random variables,

respectively. The three transformations are:

SL : Z = η + δ ln(
X − ξ

λ
), λ( X − ξ) ≥ 0,

SB : Z = η + δ ln(
X − ξ

ξ + λ−X
), 0 ≤ X − ξ ≤ λ,

SU : Z = η + δ sinh−1(
X − ξ

λ
), −∞ < X <∞.

The constants ξ and λ are location and scale parameters, respectively; η and δ are the shape

parameters. The second transformation, SB , provides a bounded random variable X; the third

transformation, SU , results in an unbounded X. For lognormal distributions, SL, the range is

bounded below if λ > 0 and bounded above if λ < 0. We use the numerical routines of Hill et al.

(1976) to find the Johnson distribution having desired moments µ, σ, α3, and α4.
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Table 2: Sample-Size Estimation for the Johnson SB Distribution with Skewness 4 and Kurtosis
30, and for the Johnson SU Distribution with Skewness 2 and Kurtosis 30

Johnson SB with (α3, α4) = (4, 30) Johnson SU with (α3, α4) = (2, 30)
nobs nobs

α γ k n n̂ ŝe(n̂) (1000’s) α γ k n n̂ ŝe(n̂) (1000’s)
.001 .001 -19000 2 2 0 23 .001 .001 -7900 2 2 0 23
.001 .001 -74.9 10 9.1 .1 411 .001 .001 -32.1 10 9.2 .1 381
.001 .001 -32 30 27.1 .5 1589 .001 .001 -17.05 30 28.4 .2 1810
.001 .5 -27.4 2 2 0 12 .001 .5 -14.62 2 2 0 14
.001 .5 -12.6 10 10 .1 375 .001 .5 -8.94 10 10.1 .1 767
.001 .5 -10.3 30 29.4 .2 2090 .001 .5 -8.004 30 29.3 .2 3035
.001 .99 -1.5 2 2 0 165 .001 .99 -1.61 2 2 0 3066
.001 .99 -2.7 10 10.2 .1 2504 .001 .99 -2.56 10 9.5 .1 8291
.001 .99 -3.7 30 31.1 .1 4525 .001 .99 -3.31 30 30.1 .1 12332
.5 .001 -400 2 2 0 64 .5 .001 -186 2 2 0 7
.5 .001 -1.7 10 9.7 .1 380 .5 .001 -1.24 10 9.9 .1 539
.5 .001 -.24 30 29.8 .1 1272 .5 .001 -0.536 30 26.5 .4 2294
.5 .5 .3 2 2.2 .1 454 .5 .5 .072 2 2.3 .1 2645
.5 .5 .3563 10 *** .5 .5 .105 10 ***
.5 .5 .35 30 *** .5 .5 .1061 30 ***
.5 .99 15 2 2 0 14 .5 .99 17.7 2 2.1 .1 11
.5 .99 .89 10 10 0 234 .5 .99 .838 10 10 0 225
.5 .99 .62 30 30.5 .1 915 .5 .99 .49 30 30 0 1082
.99 .001 .43 2 2 0 13 .99 .001 -.18 2 2.1 .1 28
.99 .001 .4125 10 *** .99 .001 .56 10 ***
.99 .001 .38 30 *** .99 .001 .786 30 ***
.99 .5 1.35 2 2 0 20 .99 .5 4.34 2 2 0 22
.99 .5 .98 10 10 0 214 .99 .5 2.751 10 10.2 .1 574
.99 .5 .86 30 29.5 .2 696 .99 .5 2.49 30 32.6 .4 3021
.99 .99 67 2 2 0 23 .99 .99 242 2 2.2 .1 17
.99 .99 1.938 10 10.2 .1 216 .99 .99 6.71 10 10 0 188
.99 .99 1.34 30 30.3 .1 546 .99 .99 4.245 30 29.3 .1 942
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