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We propose a Monte Carlo sampling algorithm for estimating guaranteed-coverage tolerance

factors for non-normal continuous distributions with known shape but unknown location and scale.

The algorithm is based on reformulating this root-finding problem as a quantile-estimation problem.

The reformulation leads to a geometrical interpretation of the tolerance-interval factor. For ar-

bitrary distribution shapes, we analytically and empirically investigate various relationships among

tolerance-interval coverage, confidence, and sample size.
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1 INTRODUCTION

Let {X1, X2, ..., Xn} be a random sample from the distribution FX of a continuous random

variable X with known shape but unknown location and unknown scale. That is, FX has

all known standardized moments but the mean µ and variance σ2 are unknown. Define

X̄ = n−1 ∑n
i=1 Xi and S2 = (n− 1)−1 ∑n

i=1(Xi − X̄)2, the sample mean and sample variance

of {X1, X2, ..., Xn}. We consider the guaranteed-coverage tolerance interval I(k∗) for X

where I(k∗) is [X̄ − k∗ S, ∞) for lower one-sided, (−∞, X̄ + k∗ S] for upper one-sided, and

[X̄ − k∗ S, X̄ + k∗ S] for two-sided intervals. The constant tolerance factor k∗ is defined

so that with 100γ% confidence the random tolerance interval covers the proportion α of the

distribution, i.e.,

PrX̄,S{ PrX{ X ∈ I(k∗) } ≥ α } = γ. (1)
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Here the future X is assumed to be independent of the sample statistics X̄ and S. The

value of k∗ depends on sample size n ∈ {2, 3, ...}, coverage α ∈ (0, 1), confidence γ ∈ (0, 1),

and the distribution shape of X. For a single application, a single interval is computed from

observed values of X̄ and S2; the probability that a future observation X lies in the interval

is random but should be at least α in 100γ% of many applications.

If µ and σ2 were known, one could solve an equation for the unknown k∗ to obtain a

tolerance interval having 100% confidence. For example, the 100%-confidence α-coverage

lower one-sided tolerance interval [F−1
X (1 − α),∞) is obtained by solving “FX(µ − k∗σ) =

1−α” for k∗ = [µ−F−1
X (1−α)]/σ and substituting into [µ−k∗σ,∞). Our interest, however,

is when µ and σ2 are unknown but are estimated by X̄ and S2.

Based on X̄ and S2, the tolerance interval I(k∗) is used to predict future behavior. In

computer simulation of a manufacturing system, X might be the throughput of a single future

shift and the observed data X1, X2, ..., Xn might be the n simulated shift throughputs. An

α proportion of future throughput is predicted to be in the interval with confidence γ. In

reliability, based on product test results X1, X2, ..., Xn, a system is designed at the tolerance

bounds to ensure, with confidence γ, that system reliability is at least α; i.e., at least 100α%

of the systems built will not fail. In quality control, a contract might specify constants n, k∗

and c so that a lot is accepted if a subset X1, X2, ..., Xn yields a value of X̄ − k∗S at least c

units (lower specification limit); these constants can be chosen using tolerance-interval logic

to guarantee that a particular lot containing 100(1−α)% defective items (defined as X < c)

is accepted with probability 1− γ.

Despite the broad range of applications, most guaranteed-coverage tolerance-interval lit-

erature assumes normally distributed X’s, e.g., Wald and Wolfowitz (1946), Guttman (1970),

Aitchison and Dunsmore (1975), and Eberhardt et al. (1989). The one-sided tolerance factor

for the normal distribution is

k∗ = tn−1,γ(
√

nzα) /
√

n, (2)

where tν,γ(λ) is the γth quantile of the noncentral t distribution with ν degrees of freedom
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and noncentrality parameter λ, and zα is the αth quantile of the standard normal. The

normal two-sided tolerance factor k∗ can be computed by solving the equation

∫ ∞

−∞
Pr{ χ2

n−1 ≥
(n− 1)v2

k∗2
}

√
n

2π
exp{−nu2

2
} du = γ,

where χ2
ν is chi-square distributed with ν degrees of freedom, and v satisfies Φ(u + v) −

Φ(u−v) = α, where Φ is the standard normal distribution function. Odeh and Owen (1980)

provide tables for one-sided and two-sided tolerance factors for normal distributions.

Some non-normal literature exists. Aitchison and Dunsmore (1975) and Patel (1986)

also discuss different forms of tolerance intervals for binomial, Poisson, exponential, gamma,

and some other standard populations. Guenther (1985) provides an extensive discussion

of distribution-free tolerance intervals. Wald (1942) develops maximum-likelihood tolerance

limits through asymptotic theory. Rao, Subrahmaniam, and Owen (1972) study the effect of

non-normality on two-sided tolerance limits with control of both tails using the distribution

shape dependent on third and fourth moments (α3, α4); they consider, however, only a small

range of (α3, α4) around the normal shape. Jilek (1981) and Jilek and Ackermann (1989)

provide a bibliography of the existing tolerance-region literature.

We focus on lower one-sided guaranteed-coverage tolerance intervals. Calculating the

factor k∗ in the upper one-sided guaranteed-coverage tolerance-interval (−∞, X̄ + k∗ S] is a

variation of the lower one-sided problem; in Appendix A we show that the upper one-sided

factor with coverage α and confidence γ is the negative of the lower one-sided factor with

coverage 1−α and confidence 1− γ. The factor k∗ in the two-sided interval [X̄ − k∗ S, X̄ +

k∗ S] can be found by a modified algorithm, as discussed in Section 6.

In Section 2, we define the research problem. In Section 3, we propose a Monte Carlo

Quantile Estimation (QE) algorithm for the lower one-sided guaranteed-coverage tolerance

factor k∗ based on reformulating k∗ as a distribution quantile. Algorithmic convergence speed

is also discussed and compared to that of stochastic approximation. In Section 4, we study

the behavior of the lower one-sided factor k∗ as a function of n, α, γ, and distribution shape.

In Section 5, we show two examples of using tolerance intervals in acceptance sampling and
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reliability. In Section 6, we show that the two-sided tolerance factor is also a distribution

quantile and hence can be solved by modifying the QE algorithm.

2 PROBLEM DEFINITION

Let FX(·) denote the distribution function from which the future observation X and the

independent sample {X1, X2, ..., Xn} are drawn. We assume that X is continuous (i.e., there

is no point with positive probability mass), the shape of FX is known, and the mean µ and

standard deviation σ > 0 are unknown. We want to find the lower one-sided guaranteed-

coverage tolerance factor k∗, given sample size n, α, γ and distribution shape, such that

Equation 1, i.e.,

PrX̄,S{ PrX{ X ≥ X̄ − k∗ S } ≥ α } = γ, (3)

is satisfied. For convenience, we define the function

g(k) = PrX̄,S{ PrX{ X ≥ X̄ − kS } ≥ α }, (4)

the confidence that the interval [X̄ − kS,∞) contains at least the proportion α of the mea-

surements. Then this problem is to solve the equation g(k∗) = γ for k∗.

We diverge from past practice. Despite some distribution-free approaches that are appro-

priate for large sample sizes, past practice has focused on building tables of tolerance-interval

constants as a function of n, α, and γ (see, e.g., the comprehensive survey by Patel (1986)).

The form of the tolerance constant differs depending on distributional assumptions, with our

k∗ corresponding to the common normality assumption. The analytical and computational

effort to build a new table is often substantial. Although computed numerically, the resulting

tables are often accurate to several digits. A practitioner uses such tables by assuming a

distribution family and reading the appropriate constant from the appropriate table. The

limitations to this approach are that (1) tables might not exist for the assumed distribution,

that (2) existing tables might not be readily available, and that (3) all tables are incomplete,

forcing the user to approximate the desired constant using interpolation or extrapolation.
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Our divergence from past practice is motivated by our work with Thiokol Corporation,

which uses tolerance intervals in its reliability program. Sample sizes are typically small,

coverage probabilities are usually high, and many distribution shapes are possible. For

example, typically for Thiokol applications n < 10, coverage α > .99999, and distribution

shape is measured using the third and fourth standardized moments. Making available tables

to practicing engineers is not feasible, because the necessary tables would be huge.

Our approach is to avoid tables by computing the tolerance-interval constant k∗ in real

time as it is needed. Such an approach avoids the limitations of tables by assuming that

engineers have interactive computing readily available. Thus, rather than provide tables, we

provide a black-box algorithm that returns to the user the desired constant as a function of

n, α, γ, and distribution shape.

We describe here a Monte Carlo sampling algorithm that estimates k∗ to about two digits

within a few seconds. (The specific tradeoff between computing time and accuracy depends

upon n, α, γ, and distribution shape.) Precision beyond two digits is available by devoting

more computing time. Providing an estimate of the standard error of the the Monte Carlo

estimate of k∗ is important, and straightforward.

Precision beyond two digits is seldom needed. The argument lies at three levels. First, the

four- or five-digit accuracy shown in tables is oftenn far beyond the modeling error caused

by not knowing the distribution shape precisely. Second, two-digit accuracy is sufficient

even if the distribution shape is known. The first derivative of confidence with respect

to the tolerance-interval factor, g′(k∗), is small. An analysis that provides a confidence of

γ = 0.901 when the nominal confidence is γ = 0.900 is not a bad analysis. Third, a Monte

Carlo estimate of k∗ is sometimes too low and sometimes too high, resulting in an average

confidence that is close to the nominal confidence.

3 METHOD

Here we discuss solving the equation g(k∗) = γ for the tolerance factor k∗, where g(k) =

PrX̄,S{ PrX{ X ≥ X̄ − kS } ≥ α } as defined in Equation 4. We show three properties of

5



the root-finding function g, propose an efficient quantile estimation (QE) algorithm using

these properties, and compare Algorithm QE to stochastic approximation algorithms, which

are designed for general root-finding problems.

In our root-finding problem, three properties of g are useful:

1. g : < → [0, 1] is a continuous nondecreasing function and strictly increasing in the set

{k : g(k) ∈ (0, 1)},

2. for 0 < γ < 1, equation g(k) = γ has a unique solution, k∗, and

3. g does not depend on the population mean µ or standard deviation σ.

These three properties are straightforward. If the value of k increases, the value of X̄−kS

decreases. Therefore, g(k), the probability of having coverage at least α, increases. In the

limits, g(−∞) = 0 and g(∞) = 1. Continuity follows since FX has no mass points, so the

first property holds. For the second property, existence of the root follows from continuity

and the intermediate value theorem; uniqueness follows from g being increasing. To show

the third property, let Y = (X − µ)/σ and Yi = (Xi − µ)/σ for i = 1, 2, ..., n. Then

PrX{ X ≥ X̄ − kS } = PrY { Y ≥
∑n

i=1 Yi

n
− k

√√√√∑n
i=1[Yi −

∑n

j=1
Yj

n
]2

n− 1
}

= PrY { Y ≥ Ȳ − k SY },

where Ȳ and SY
2 are the sample mean and sample variance of Y1, ..., Yn, respectively. Hence,

g(k) = PrȲ ,SY
{ PrY { Y ≥ Ȳ − k SY } ≥ α }

and the third property holds.

Despite not depending on µ or σ, g can be easily computed only for special cases, such

as the normal distribution, since g depends upon the joint distribution function of X̄ and S.

However, g(k) can be estimated by Monte Carlo simulation experiments using any arbitrary

values of µ and σ2.

We propose interpreting k∗ as a quantile, which allows application of our Quantile Es-

6



timation (QE) algorithm. Then we show that QE is asymptotically more efficient than

general-purpose stochastic-approximation algorithms.

3.1 Quantile Estimation Algorithm (QE)

A natural approach to solving for k∗ in Equation 3 would be to invert g, defined in

Equation 4. By Property 1, the inverse function g−1 always exists for the domain (0, 1).

However, it is easy to compute g−1 only for special cases, such as when X is normally

distributed.

Nevertheless, we always can simplify g to reformulate k∗ as a distribution quantile. We

show this in Result 1.

Result 1 Define the random variable K = [ X̄ − F−1
X (1 − α) ] / S. Then k∗ = F−1

K (γ),

where FK(·) is the distribution function of K.

Proof: g(k) = PrX̄,S{ PrX{X ≥ X̄ − kS} ≥ α }

= PrX̄,S{ PrX{X < X̄ − kS} ≤ 1− α }

= PrX̄,S{ X̄ − kS ≤ F−1
X (1− α) }

= PrX̄,S{
X̄ − F−1

X (1− α)

S
≤ k }

= FK(k).

Hence g−1(·) = F−1
K (·). Therefore, k∗ = g−1(γ) = F−1

K (γ), the γth quantile of FK .

Algorithm QE estimates k∗ for lower one-sided tolerance intervals [X̄ − k∗ S, ∞) by

generating m Monte Carlo independent realizations of K. The estimate is

k̂∗ = ω k( b(m+1)γc ) + (1− ω) k( d(m+1)γe ), (5)

the convex combination of the b(m + 1)γcth and (d(m + 1)γe)th order statistics, with the

weight ω = d(m + 1)γe − (m + 1)γ chosen to reduce the first-order bias of the quantile

estimate. (The bac is the biggest integer that is no larger than a and dae is the smallest

integer that is no less than a.) See Avramidis (1993) for other possibilities. Neither k̂∗ nor

k∗ depends on µ or σ.
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Algorithm QE( m ): Given n, α, γ, and distribution shape, estimate k∗.

Step 0. Initialize i = 1.

Step 1. Independently generate a random sample {x1, x2, ..., xn} from the population X

with any arbitrary values of µ and σ.

Step 2. Compute the sample mean x̄ and standard deviation s from the sample.

Step 3. Compute ki = [x̄− F−1
X (1− α)]/s.

Step 4. If i < m, set i← i + 1 and go to Step 1.

Step 5. Compute k̂∗ from k1, k2, ..., km using Equation 5.

Given k̂∗ from QE, a practitioner can form a lower one-sided tolerance interval [X̄ −

k̂∗ S,∞) using observed values of X̄ and S from real-world data.

3.2 Efficiency of Algorithms QE and Stochastic Approximation

We show here that the QE algorithm always converges at rate O(m−1/2), the best that

stochastic approximation algorithms can achieve. Furthermore, QE has no algorithmic pa-

rameter. Hence our QE is easier to apply and asymptotically more efficient.

The asymptotic distribution of the QE estimate k̂∗, a combination of order statistics

based on m independent realizations of random variable K, is (Lehmann (1983), p. 394)

√
m(k̂∗ − k∗)

D−→ N(0,
γ(1− γ)

f 2
K(k∗)

), (6)

where fK(·) is the density function of K. Hence QE always converges at rate O(m−1/2).

Stochastic approximation is a classical Monte Carlo approach first proposed by Robbins

and Monro (1951) for root-finding problems when the function value g(·) is difficult to

compute. There are several variations (e.g., Kesten (1958), Venter (1967), Andradóttir

(1992), Polyak and Juditsky (1992)). All are iterative methods requiring only an ability to

estimate g(k). Each has several algorithmic parameters (initial point, step size, etc.), which

strongly affect the speed of convergence.
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Stochastic approximation achieves its best asymptotic distribution, that of Equation 6,

when the optimal step size, which depends on g′(k∗) (Sacks (1958), Venter (1967)), is chosen

at each iteration. However, g′(k∗) is unknown since k∗ is unknown. Hence QE is asymptoti-

cally more efficient than stochastic approximation.

Variations of QE can improve performance. Because the normal distribution yields a fast

solution via the noncentral t distribution, the normal-distribution estimator can be used as

a control variate. A second variation is to sample K dependently using, for example, Latin

hypercube sampling. We do not pursue these variations here because simple sampling has

been adequate for our needs.

4 ANALYSIS

The lower one-sided tolerance factor k∗ is a function of the parameter values n, α, γ, and

distribution shape. In Subsection 4.1 we discuss properties of k∗ for symmetric distribution

shape and for infinite sample size. In Subsection 4.2 we discuss the sensitivity of k∗ to the

parameter values n, α, γ, and distribution shape.

4.1 Symmetric Distribution Shape and Infinite Sample Size

Here we show that for symmetric distributions the value of k∗ with coverage α and

confidence γ is the negative value of k∗ with coverage 1− α and confidence 1− γ. We also

show that, as the sample size n goes to infinity, k∗ goes to [µ− F−1
X (1− α)]/σ.

Result 2 Let k∗n,α,γ denote the tolerance factor for the random variable X such that the

coverage is α, confidence level is γ, and the sample size is n. If the distribution of X is

symmetric, then for 0 < α, γ < 1 and n ∈ {2, 3, ...}

k∗n,α,γ = −k∗n,1−α,1−γ. (7)

The proof is in Appendix B.
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The limiting value of k∗ as the sample size n goes to infinity, for given values of α and γ,

is sometimes useful as a bound, as an initial guess, or as an approximation when n is large.

Odeh and Owen (1980) propose the normal-case limiting value, which is generalized to every

continuous distribution in our Result 3.

Result 3 For every 0 < α, γ < 1 and distribution FX , limn→∞ k∗n,α,γ = [µ−F−1
X (1−α)] / σ.

When n → ∞, X̄ converges in probability to µ and S converges in probability to σ.

Therefore, Slutsky’s theorem implies from Result 1 that the random variable K converges in

distribution to the constant [µ − F−1
X (1− α)]/σ. Therefore, all quantiles g−1(q), 0 < q < 1,

converge to this same constant, yielding Result 3.

This limiting value is a function of only α and distribution shape. As always, it is not a

function of µ or σ. In addition, the limiting value is not a function of the confidence γ, since

the limiting joint distribution of (S, X̄) is degenerate at (σ, µ).

4.2 Sensitivity Analysis

We show here that the lower one-sided factor k∗ is an increasing function of α and of γ,

but that k∗ is not necessarily a monotonic function of n. The distribution shape can affect

the values of k∗ substantially.

To measure distribution shape, we use the skewness α3 and kurtosis α4, the third and

fourth standardized moments. For any specified point (α3, α4), we choose the unique corre-

sponding Johnson distribution. The Johnson family, proposed by Johnson (1949), includes

three transformations of the standard normal distribution. Let X and Z denote the Johnson

and standard normal random variables, respectively. The three transformations are:

SL : Z = η + δ ln(
X − ξ

λ
), λ( X − ξ) ≥ 0,

SB : Z = η + δ ln(
X − ξ

ξ + λ−X
), 0 ≤ X − ξ ≤ λ,

SU : Z = η + δ sinh−1(
X − ξ

λ
), −∞ < X <∞.
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The constants ξ and λ are location and scale parameters, respectively; η and δ are the shape

parameters. The second transformation, SB, provides a bounded random variable X; the

third transformation, SU , results in an unbounded X. For lognormal distributions, SL, the

range is bounded below if λ > 0 and bounded above if λ < 0. DeBrota et al. (1989) develop

two public-domain software packages; VISIFIT and FITTR1. VISIFIT allows visual fitting

to a desired density shape. FITTR1 fits Johnson distributions to data using any of several

criteria. We use the numerical routines of Hill, Hill, and Holder (1976) to find the Johnson

distribution having desired moments µ, σ, α3, and α4. We arbitrarily use µ = 0 and σ = 1,

since k∗ is not a function of µ or σ.

Tables 1 and 2 show values of k∗ for thirty-six design points: n ∈ {2, 10, 30,∞}, α ∈

{.001, .5, .99}, and γ ∈ {.001, .5, .99}. The normal-distribution results in Table 1 are com-

puted numerically. The (α3, α4) = (4, 30) Johnson-distribution results in Table 2 are esti-

mates using the QE algorithm based on 500,000 independent Monte Carlo samples of size

n; only significant digits are shown, based on standard errors estimated using Schmeiser et

al. (1990), and Hashem and Schmeiser (1994).

Table 1: Tolerance Factors for the Normal Distribution

n
α γ 2 10 30 ∞

.001 .001 -2365 -8.93 -5.15 -3.09

.001 .5 -4.53 -3.21 -3.13 -3.09

.001 .99 -0.97 -1.85 -2.28 -3.09

.5 .001 -225 -1.36 -0.62 0.00

.5 .5 0.00 0.00 0.00 0.00

.5 .99 22.49 0.89 0.45 0.00

.99 .001 0.15 1.08 1.49 2.33

.99 .5 3.38 2.41 2.35 2.33

.99 .99 186 5.07 3.45 2.33

These two tables illustrate four points that are true in general: (1) The tolerance factor k∗

increases as the coverage α increases. (2) The tolerance factor k∗ increases as the confidence

γ increases. (3) The sensitivity to n is least when α ≈ 0.5 and γ ≈ 0.5, with k∗ = 0 in
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Table 2: Tolerance Factors for the Johnson SB with Skewness 4 and Kurtosis 30

n
α γ 2 10 30 ∞

.001 .001 -1.9E+4 -74.9 -32 -8.61

.001 .5 -27.4 -12.6 -10.3 -8.61

.001 .99 -1.5 -2.7 -3.7 -8.61

.5 .001 -400 -1.7 -0.24 0.33

.5 .5 0.30 0.36 0.35 0.33

.5 .99 15 0.89 0.62 0.33

.99 .001 0.43 0.41 0.38 0.74

.99 .5 1.35 0.98 0.86 0.74

.99 .99 67 1.94 1.34 0.74

symmetric cases such as the normal. (4) The value of k∗ is sensitive to the non-normality.

The behavior of k∗ is not always monotonically decreasing as n increases. For the normal

distribution in Table 1, it is true that k∗ moves monotonically to the limiting value; for the

usual case of large confidence values γ, k∗ decreases. For the Johnson distribution in Table 2,

however, k∗ does not move monotonically to its limiting value in the fifth and seventh rows.

If we expanded Table 2, the seventh-row values of k∗ would be 0.40, 0.44 and 0.49 when n

is 60, 100 and 200, respectively. Hence, the value of k∗ decreases with n until some value of

n between 30 and 40, where it starts increasing toward the limiting value 0.74. The reason

for this non-monotonic behavior is that the shape of the (S, X̄) joint distribution changes

as n increases. We later study this effect using a geometric interpretation (see Figure 4).

To interpret the behavior of the tolerance factor k∗, we now view the problem geomet-

rically. Consider the straight line L : x̄ = k∗s + F−1
X (1 − α) in the sample plane of (S, X̄)

with given values of n, α, γ and (α3, α4), where x̄ and s are the realizations of X̄ and S,

respectively. The x̄-axis intercept F−1
X (1− α) is determined only by distribution shape and

α. The slope is k∗, determined so that γ is the probability of the random point (S, X̄) lying

on or below L. The value of k∗ is not necessarily positive; negative values of k∗ occur when

α or γ, or both, are small.

Figure 1 is a scatter plot of one hundred independent observations (s, x̄) from standard
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Figure 1: Plot of Lines L in the Sample Plane of (S, X̄) for α = 0.01, 0.5 and 0.99 with
Standard Normal Data, n = 2, and γ = 0.5

normal samples of size n = 2. For γ = 0.5, the three lines corresponding to α = 0.01, 0.5, 0.99

illustrate the change of k∗ with change of α. (The slopes are computed numerically.) As α

increases, the intercept on the x̄-axis moves down so the slope of line L goes up in order to

keep half of the observations (s, x̄) below line L.

Figure 1 also illustrates that k∗ increases with γ, although the change of γ with α fixed is

not plotted. As γ increases, the line L pivots counterclockwise at (0, F−1
X (1−α)) to increase

the proportion of the observations below L; hence, the slope of L increases.

Figures 2 and 3 illustrate k∗ increasing and decreasing, respectively, with n. One hundred

independent observations (s, x̄) are plotted for both n = 2 and n = 30 for the Johnson SB

population with skewness 4 and kurtosis 30. Lines are shown for n = 2, 30 and ∞, and for

α = 0.5. (The slopes are estimated using QE with m = 500, 000 samples of size n.) The

only difference between Figure 2 and Figure 3 is that the value of γ changes from 0.001 to

0.99. As n increases, the slope of line L passing through point (0, F−1
X (1 − α)) goes closer

to the limiting value of k∗ as the joint distribution shrinks toward the point (σ, µ). Since a

proportion γ of the points lies below the line, the larger value of γ has the larger slope k∗.

Figure 4 shows that k∗ does not necessarily change monotonically with n. Three sets of
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Figure 2: Plot of Line L in Sample Plane of (S, X̄) from Johnson SB Distribution for n = 2,
30, and ∞, where α = 0.5, and γ = 0.001 (When n = 2, the slope is −400 and the Line L is
hidden in the x̄-axis.)

Figure 3: Plot of Line L in Sample Plane of (S, X̄) from Johnson SB Distribution for n = 2,
30, and ∞, where α = 0.5, and γ = 0.99
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thirty points (S, X̄) from the same Johnson SB distribution are shown for each of n = 2,

n = 30, and n = 200. The four lines (for n = 2, 30, 200,∞) correspond to α = 0.99 and

γ = 0.1. As n increases, the slope first decreases and then increases to the limiting k∗. The

graph shows that nonmonotonic behavior occurs because the joint distribution of (S, X̄)

changes shape as it shrinks to (σ, µ). In this case, the changing shape effect dominates for

small sample sizes and the shrinking effect dominates for large sample sizes.

Figure 4: Plot of Line L in Sample Plane of (S, X̄) from Johnson SB Distribution for n = 2,
30, 200, and ∞, where α = 0.99, and γ = 0.1

5 EXAMPLES

We discuss two examples of tolerance intervals used in acceptance sampling and reliability,

respectively. Example 1 assumes the normal population and Example 2 assumes the Johnson

population. Comparing these two examples, we see that the value of k∗ is sensitive to non-

normality.

Example 1: The acceptance sampling problem is to decide whether a lot should be
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accepted or rejected, based on an inspected sample of size n from the lot. Given n = 10 and

the lower specification limit 0, suppose the sampling plan is:

Accept the lot if x̄− k∗ s ≥ 0 and reject otherwise,

based on an inspected sample {x1, ..., x10}. The constant k∗ controls the proportion of

defective items (i.e., below 0) in accepted lots no more than 1%, with confidence 99%.

Suppose the population is normally distributed. Then the acceptance sampling procedure is

as follows.

1. Compute k∗ with n = 10, α=1−0.01=0.99, γ = 0.99 and the normal population.

Table 1 gives k∗ = 5.07.

2. Obtain a sample {x1, ..., x10} from the lot. Compute x̄ =
∑10

i=1 xi/10 = 388, and

s = [
∑10

i=1(xi − x̄)2/9 ]1/2 = 200. Then x̄− k∗ s = 388− 5.07 · 200 = −626.

3. Reject the lot since x̄− k∗ s = −626 < 0.

Example 2: Consider the reliability of solid-fuel rocket engines. Characteristic X is the

difference between the strength of the rocket case and the pressure when this rocket is fired.

The lower specification limit is therefore zero and the unknown reliability is r = PrX{X ≥ 0}.

Suppose n = 10, γ = 99%, and X has a Johnson SB distribution with skewness 4 and kurtosis

30. Based on a sample {x1, ..., x10}, let k∗ = (x̄ − 0)/s. Given this observed k∗, n, and γ,

find the coverage α satisfying Equation 3. Then with 99% confidence, the reliability r is said

to be at least α (Owen and Hua (1977)). Notice that α and k∗ here are random, but the

tolerance limit is fixed at 0. An engineer may perform the reliability program as follows.

1. Observe {x1, ..., x10} from 10 fired test rockets. Compute x̄ =
∑10

i=1 xi/10 = 388, and

s = [
∑10

i=1(xi − x̄)2/9 ]1/2 = 200. Let k∗ = (x̄− 0)/s = 388/200 = 1.94.

2. Compute the value of α satisfying Equation 3 with k∗ = 1.94, n = 10, γ = 0.99, and

Johnson SB shape. Table 2 gives α = 0.99.

3. Conclude, with 99% confidence, that the system reliability is at least α = 99%.
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6 TWO-SIDED TOLERANCE FACTORS

The factor k∗ in the two-sided guaranteed-coverage tolerance interval [X̄−k∗ S, X̄+k∗ S]

is also a quantile of an observable random variable. Hence Algorithm QE can be modified

to solve for k∗.

The two-sided factor k∗ satisfies Equation 1, i.e.,

PrX̄,S{PrX{X̄ − k∗ S ≤ X ≤ X̄ + k∗ S} ≥ α} = γ. (8)

Let vα(X̄) = v be the random variable satisfying FX(X̄ + v) − FX(X̄ − v) = α. Then the

event “PrX{X̄ − k∗ S ≤ X ≤ X̄ + k∗ S} ≥ α” in Equation 8 is equivalent to the event

“k∗ S ≥ vα(X̄)”. Hence, Equation 8 can be rewritten as

PrX̄,S{ vα(X̄)/S ≤ k∗ } = γ.

Define the random variable K = vα(X̄)/S, which again does not depend on the population

mean µ or standard deviation σ. Then k∗ is the γth quantile of the distribution of K, which

can be observed via realizations of X̄ and S.

The modification of Algorithm QE for two-sided tolerance intervals estimates k∗ from

order statistics in Equation 5 based on m independent realizations of the observable K.

Analogous to the QE Algorithm for lower one-sided tolerance factors in Section 3, Step 3 is

changed to

Step 3: Compute ki = vα(x̄)/s, where vα(x̄) = v satisfies FX(x̄ + v)− FX(x̄− v) = α.

The new Step 3 requires numerical root finding for v.
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APPENDIX A: UPPER ONE-SIDED TOLERANCE FACTORS

Upper one-sided tolerance intervals are closely related to lower one-sided intervals. Let

kU
n,α,γ and kL

n,α,γ denote the factors for upper and lower one-sided intervals, respectively, such

that the coverage is α, confidence is γ and the sample size is n. (Notice that the previous

notation k∗ or k∗n,α,γ is now kL
n,α,γ.) Then

PrX̄,S{PrX{X ≤ X̄ + kU
n,α,γ S} ≥ α} = γ

implies that

PrX̄,S{PrX{X ≥ X̄ + kU
n,α,γ S} ≤ 1− α} = γ,

and therefore

PrX̄,S{PrX{X ≥ X̄ + kU
n,α,γ S} ≥ 1− α} = 1− γ.

Hence,

kU
n,α,γ = −kL

n,1−α,1−γ . (9)

To estimate the upper one-sided tolerance factor k∗ with coverage α and confidence γ, we

can estimate the lower one-sided tolerance factor with coverage 1− α and confidence 1− γ

and then change the sign. The limiting value of the upper one-sided guaranteed-coverage

tolerance factor is then, from Equation 9 and Result 3,

lim
n→∞

kU
n,α,γ = [ F−1

X (α)− µ ] / σ,

for all positive values of γ. If the distribution of X is symmetric, then from Equation 9 and

Result 2,

kU
n,α,γ = kL

n,α,γ ,

as noticed in Patel (1986) for the normal case.
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APPENDIX B: PROOF FOR RESULT 2

Here we prove that if X is symmetrically distributed, then the lower one-sided tolerance

factor satisfies k∗n,α,γ = −k∗n,1−α,1−γ.

Because changing µ does not affect the tolerance factor, without loss of generality set

µ = 0, so that the distribution of X is symmetric at zero. Then, the samples (x1, ..., xn)

and (−x1, ...,−xn) are equally likely. Hence their sample statistics (x̄, s2) and (−x̄, s2),

respectively, are equally likely. Given n ∈ {2, 3, ...} and 0 < α, γ < 1, then k∗n,α,γ satisfies

PrX̄,S{PrX{X ≥ X̄ − k∗n,α,γ S} ≥ α} = γ.

Also, from Equation 9,

PrX̄,S{ PrX{X ≤ X̄ − k∗n,α,γ S} ≥ 1− α } = 1− γ.

Because the distribution of X is symmetric at zero,

PrX̄,S{ PrX{X ≥ −X̄ + k∗n,α,γ S} ≥ 1− α } = 1− γ.

Because (X̄, S) and (−X̄, S) are equally likely,

PrX̄,S{ PrX{X ≥ X̄ + k∗n,α,γ S} ≥ 1− α } = 1− γ.

Hence,

k∗n,α,γ = −k∗n,1−α,1−γ.
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